

Growing Production & Transformative Discoveries

INVESTOR PRESENTATION • December 2025

Forward-Looking and Cautionary Statements

This Presentation is being provided for information purposes only and does not constitute or form part of, and should not be construed as, an offer or invitation to sell or any offer to purchase or subscribe for any securities of K92 Mining Inc. (the "Company" or "K92") in Canada, the United States or any other jurisdiction. Trading in the securities of the Company should be considered highly speculative.

CAUTIONARY STATEMENT REGARDING FORWARD LOOKING INFORMATION

Certain statements, beliefs and opinions in this presentation, including any information relating to K92's future financial or operating performance contained in text, graphs, tables and charts are "forward looking" under applicable Canadian legislation, which reflect the Company's current expectations and projections about future events. Forward-looking statements are generally identified by the use of terminology such as "plans", "expected", "believes" or variations of such words and phrases or statements that certain actions, events or results "may", "could", "would", "would", "should", "might" or "will be taken", "occur" or "be achieved" or the negative connotation of such terms.

Forward-looking statements are based on estimates and assumptions as of the date of this presentation regarding K92's future financial or operating performance that, while considered reasonable, are subject to known and unknown risks, uncertainties, and other factors which may cause the actual results and future events to differ materially from those expressed or implied and which are beyond the Company's ability to control or predict. Forward-looking statements contained in this presentation regarding past trends or activities will continue in the future and are not guarantees of future performance. All statements regarding: the definitive feasibility study (DFS) of the Kainantu Gold Mine; the Stage 3 Expansion; expectations of further drilling results; potential expansion or resources or reserves are forward-looking and may or may not occur. Information contained herein is based on certain factors and assumptions including results; potential expansion of further drilling results; potential expansion of further drilling results; potential expansion or reserves are forward-looking and may or may not occur. Information contained herein is based on certain factors and assumptions including results; potential expansion affecting the Company's operations; political and legal developments in Papua New Guinea being consistent with the Company's operations; political and legal developments in Papua New Guinea being consistent with the Company's operations; presentations of K92's mineral reserve and mineral resource estimates; exchange rates between the Canadian dollar, U.S. dollar, and the Papua New Guinea Kina being consistent with the Company's operations; presentations, the extension of the papua New Guinea Kina being consistent with K92's expectations; presentations and antibolic presentations of the papua New Guinea Kina being consistent with K92's expectations; presentations and antibolic presentations and antibolic presentations and the absence of material negative comments during the expectation of the Company

Accordingly, all of the forward-looking statements contained herein are qualified by these cautionary statements. K92 expressly disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, events or otherwise, except in accordance with applicable securities laws. No person should place undue reliance on forward-looking statements, which speak only as of the date of this presentation.

NON-IFRS MEASURES

This presentation includes certain terms or performance measures commonly used in the mining industry that are not defined under International Financial Reporting Standards ("IFRS"), including "cash operating costs", "earnings before interest, taxes, depreciation and amortization" ("EBITDA"), and "all-in sustaining costs" ("AISC"). Non-IFRS measures do not have any standardized meaning prescribed under IFRS, and therefore they may not be comparable to similar measures employed by other companies. The data presented is intended to provide additional information and should not be considered in isolation or as a substitute for measures of performance prepared in accordance with IFRS and should be read in conjunction with K92's consolidated financial statements. Readers should refer to K92's MD&A under the heading "Non-IFRS Performance Measures", available on SEDAR+ and K92's website, for a more detailed discussion of how the Company calculates such measures and a reconciliation of certain measures to IFRS terms.

CAUTIONARY NOTE TO U.S. READERS CONCERNING ESTIMATES OF MINERAL RESERVES AND MINERAL RESOURCES

Information concerning the properties and operations of K92 has been prepared in accordance with Canadian standards under applicable Canadian securities laws and may not be comparable to similar information for United States companies. The terms "Mineral Resource", "Measured Mineral Resource", "Indicated Mineral Resource" and "Inferred Mineral Resource" used in this presentation are Canadian mining terms as defined in the Definition Standards for Mineral Resources and Mineral Resource in National Institute of Mining, Metallurgy and Petroleum ("CIM Definition Standards"), and incorporated by reference in National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101").

The SEC amended the disclosure requirements and policies for mining properties ("SEC Modernization Rules") to more closely align with current industry and global regulatory practices and standards, and became effective in 2019, with compliance requirements for the first fiscal year beginning on or after January 1, 2021. We have replaced the historical property disclosure requirements for mining registrants that were included in SEC Industry Guide 7. The SEC now recognizes estimates of "measured mineral resources" and "inferred mineral resources". In addition, the SEC has amended its definitions under the CIM Definitions will be corresponding definitions under the CIM Definitions Standards. While the SEC Modernization Rules are "substantially similar to the CIM Definition Standards, readers are cautioned that there are differences between the SEC Modernization Rules and the CIM Definitions Standards. Accordingly, there is no assurance any mineral resources or mineral resources and "inferred mineral resources" under NI 43-101 would be the same had the Company prepared the reserve and resource estimates under the SEC Modernization Rules.

United States investors are also cautioned that while the SEC now recognizes "indicated mineral resources" and "inferred mineral resources" and "inferred mineral resources" and "inferred mineral resources" in the mineralization in these categories will ever be converted into a higher category of mineral resources or into mineral reserves. Mineralization described using these terms has a greater amount of uncertainty as to their existence and feasibility than mineralization that has been characterized as reserves. Accordingly, investors are cautioned not to assume that any "indicated mineral resources" or "inferred mineral resources" that the Company reports are or will be economically or legally mineable. Further, "inferred mineral resources" have a greater amount of uncertainty as to their existence and as to whether they can be mined legally or economically. Therefore, United States investors are also cautioned not to assume that all or any part of the "inferred mineral resources" exist. In accordance with Canadian securities laws, estimates of "inferred mineral resources" cannot form the basis of feasibility or other economic studies, except in limited circumstances where permitted under NI 43-101.

The mineral reserve and mineral resource data set out in this presentation are estimates, and no assurance can be given that the anticipated tonnages and grades will be achieved or that the indicated level of recovery will be realized. The Company does not include equivalent gold ounces for by-product metals contained in mineral reserves in its calculation of contained ounces and mineral reserves are not reported as a subset of mineral resources.

QUALIFIED PERSON: The scientific and technical information contained herein has been reviewed and approved by Mr. Andrew Kohler, PGeo, K92's Mine Geology Manager and Mine Exploration Manager, and a Qualified Person as defined by NI 43-101.

NI 43-101 – NI 43-101 – the Updated Definitive Feasibility ("Updated Definitive Feasibility Study, Kainantu Project, Papua New Guinea" dated March 21, 2025. with an effective date of January 1, 2024. Readers are encouraged to review the full text of the technical report, which is available on K92's website and under the Company's profile on SEDAR+.

K92 Mining – A Unique Tier-1 Opportunity

Rapid near-term growth to Tier 1 Mid-Tier Producer towards 500 koz AuEq pa at industry leading low costs

- Stage 3 Expansion to 300 koz AuEq pa (1.2 mtpa plant construction complete and first saleable production recorded early Oct/2025) average AISC of \$920/oz AuEq.
- Stage 4 Expansion to +400 koz AuEq pa (commissioning targeting late-2027)

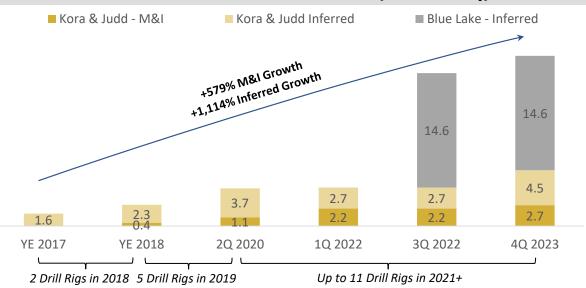
Experienced team with proven track-record in Papua New Guinea

Strong balance sheet and mine cash flow supports mine transformation

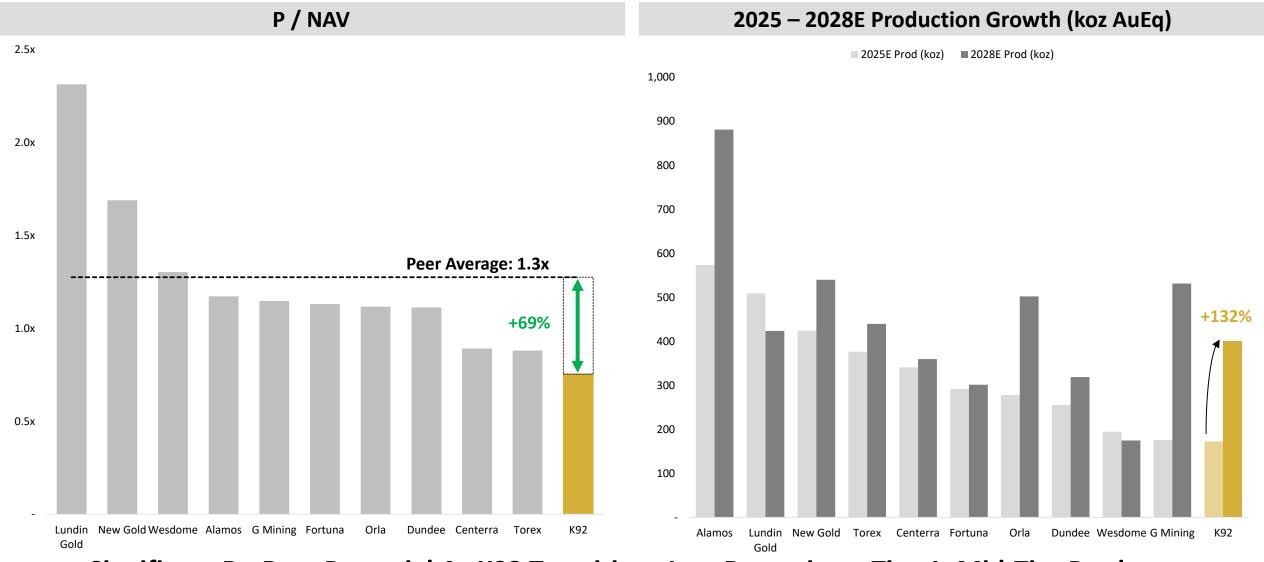
Mid-Tier Producer Growth Profile (koz AuEq)

Large, high-grade resource with significant growth potential from multiple deposits

- \$20m exploration budget in 2025, potential to double near-term upon delivery of Stage 3 Expansion
- Arakompa Maiden Mineral Resource targeting H1 2026.

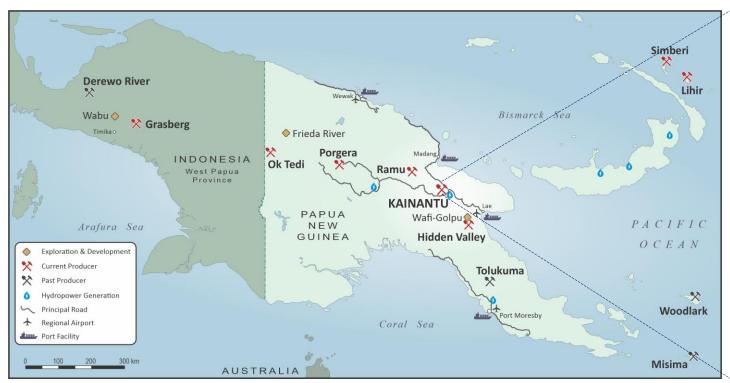

Significant re-rating potential ahead and during execution of near-term expansions

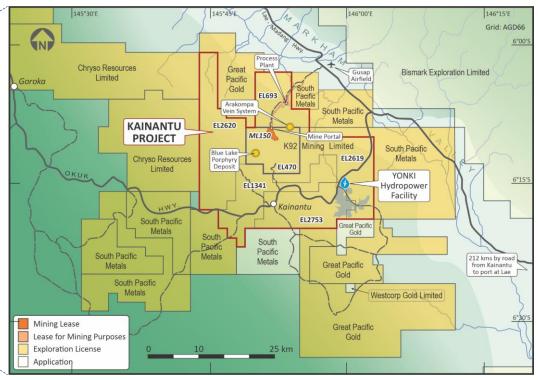
Consensus P/NAV of 0.8x NAV vs Mid-Tier Producers at 1.3x NAV⁽¹⁾


ESG focused with strong relationships with government, community and workforce

K92 Resource Growth Profile (moz AuEq)

Attractive Valuation - Compelling Re-Rate Opportunity





Significant Re-Rate Potential As K92 Transitions Into Becoming a Tier-1, Mid-Tier Producer

Located Amongst World Class Geology and Excellent Infrastructure

Natural Resource Friendly Jurisdiction

- Multiple Senior Mining Companies Operating (Barrick, Harmony, Newmont)
- Vibrant democracy since independence in 1975
- ~87% of exports from mining, oil and gas⁽¹⁾

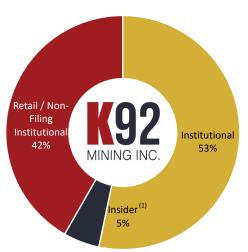
Located along Prolific Pacific Ring of Fire, hosting multiple world-class deposits in both PNG and West Papua

Large ~830 km² land package along major regional structure hosting multiple large world-class deposits/mines (Ramu, Wafi-Golpu, Hidden Valley)

Excellent and Well-Developed Infrastructure

- Plant, tailings dam and infrastructure located ~6.5 km from mine portal in Markham Valley (lowlands, plenty of land for construction)
- Sealed road from Port of Lae
- Hydro grid power (full standby diesel gen sets)
- Commercial airstrip

Note 1: 2022 EITI Report.


Corporate Structure

Key Financial Data (as at September 30/25)	
Symbol	TSX: KNT, OTXQX: KNTNF
Fully Diluted Shares Outstanding	247.1
Cash and Cash Equivalents	US\$185m
Debt	US\$55m
Remaining Additional Liquidity	Up to US\$90m

Analyst Coverage	
Michael Gray	agentis
Andrew Mikitchook	BMO 😩 Capital Markets
Peter Bell	cg/Canaccord Genuity
Varun Arora	CLARUS
Nic Dion	CORMARK SECURITES INC.
Bryce Adams	Desjardins
Alex Terentiew	NATIONAL BANK OF CANADA FINANCIAL MARKETS
Craig Stanley	RAYMOND JAMES
Harrison Reynolds	RBC Capital Markets
Ovais Habib	
Ralph Profiti	STIFEL SGMP
Wayne Lam	D Securities
Connor Mackay	Ventum 💛

Shareholder Overview

Fully Funded to Execute Growth Trajectory

- **Strong Cash Balance**
- **Significant Available Liquidity From Credit Facilities**
- **Record Production and Record Gold Prices = Strong Operational Cash Flow**
 - **Downside Protected During Construction**

Puts Purchased for US\$4.0m in May 2025 covering 15,000 oz Au per month at \$3,000/oz for 8 months (until Dec/2025), to protect against commodity price risk during the construction. This is not a hedge, this is insurance, and we retain FULL EXPOSURE TO THE UPSIDE IN COMMODITY PRICES.



Chart courtesy of StockCharts.com

Delivering Sustainable Value – 2024 Sustainability Report

Communities

- Outstanding Community Humanitarian Initiative awarded by the PNG Chamber of Resources and Energy in 2024 for the K92 Sustainable Livelihoods Agriculture Program
- Creating business opportunities for landowner groups via Joint Ventures with local businesses, including \$28M spent in 2024
- 400+ community graduates from K92's Adult Literacy Program in 2024

People

- Over 9 quarters without a lost time-injury¹
- Currently employ +2,300 people (employees plus contractors) with ~92% of total workforce from PNG, including nearly one-third from local communities
- Developing skills through multiple MOUs with PNG tertiary institutions
- Providing tertiary education scholarships for PNG students with 66 awarded in 2024
- Kainantu Endowment established in 2023 to provide tertiary scholarships for students in PNG

Environment

- Operate a low-footprint underground mine with downstream tailings impoundment and no permanent surface waste rock facilities
- No cyanide used for processing
- Target a 25% reduction in GHG emissions by 2030 (against a business-as-usual forecast)
- Hydropower is a significant power source at the Kainantu Gold Mine, with solar power now being investigated

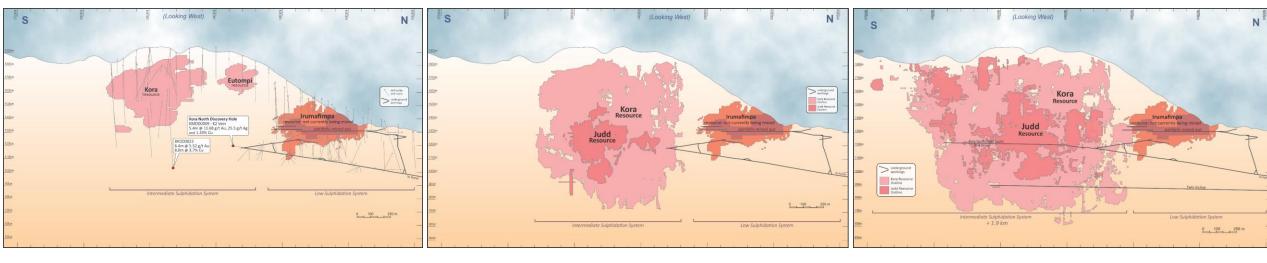
Government

- \$62.6M in taxes and royalties paid in 2024 (second highest mining corporate income taxpayer in PNG)
- \$6.6M allocated for Company's inaugural project under the Infrastructure Tax Credit Scheme ("ITCS") of the Government of PNG
- Future ITCS projects currently being planned with focus on education, health, infrastructure, and law & order projects

K92 maintains a strong commitment to the prosperity and development of PNG and our host communities through responsible mining practices and a strategic commitment to delivering sustainable value.

¹ As at September 30, 2025.

Value Creation Through Discovery


May 2017

October / December 2021

September 2023

(Long Sections, Looking West)

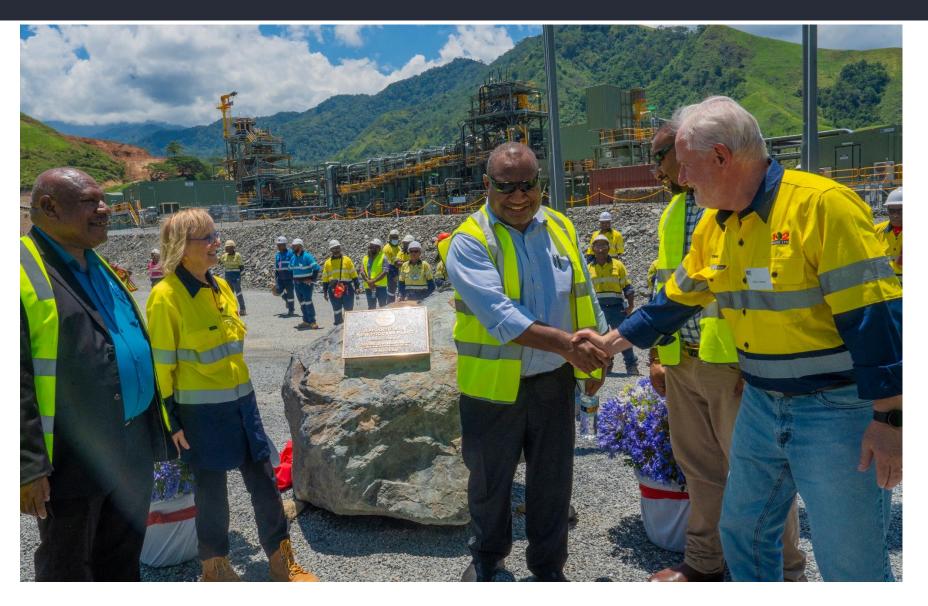
Kora North Kora and Judd Kora and Judd

1.7 moz at 11.6 g/t AuEq Inferred¹

2.3 moz at 9.3 g/t AuEq Measured & Indicated 2.6 moz at 9.1 g/t AuEq Inferred²

2.6 moz at 10.0 g/t AuEq Measured & Indicated 4.5 moz at 8.5 g/t AuEq Inferred³

K92 has and continues to create significant value through exploration and expansion


¹⁾ Inferred Resource Grade: 11.6 g/t AuEq (7.1 g/t Au, 34 g/t Ag, 2.2% Cu).

²⁾ Measured and Indicated Resource Grade: 9.3 g/t AuEq (7.7 g/t Au, 18 g/t Ag, 0.9% Cu). Inferred Resource Grade: 9.1 g/t AuEq (6.8 g/t Au, 26 g/t Ag, 1.3% Cu).

³⁾ Measured and Indicated Resource Grade: 10.0 g/t AuEq (7.8 g/t Au, 21 g/t Ag, 1.2% Cu). Inferred Resource Grade: 8.5 g/t AuEq (5.7 g/t Au, 27 g/t Ag, 1.5% Cu).

2025 Has Been A Transformational Year for K92

Stage 3 Expansion Process Plant Grand Opening on October 16 – <u>Delivered Under Budget</u>

Systematically Executing to Become a Tier 1 Mid-Tier Producer

Plant Construction
Completed in Oct 2025

Stage 3
1,200,000 tpa
300 koz AuEq pa
New Stage 3 Process Plant
Operating with Stage 2A

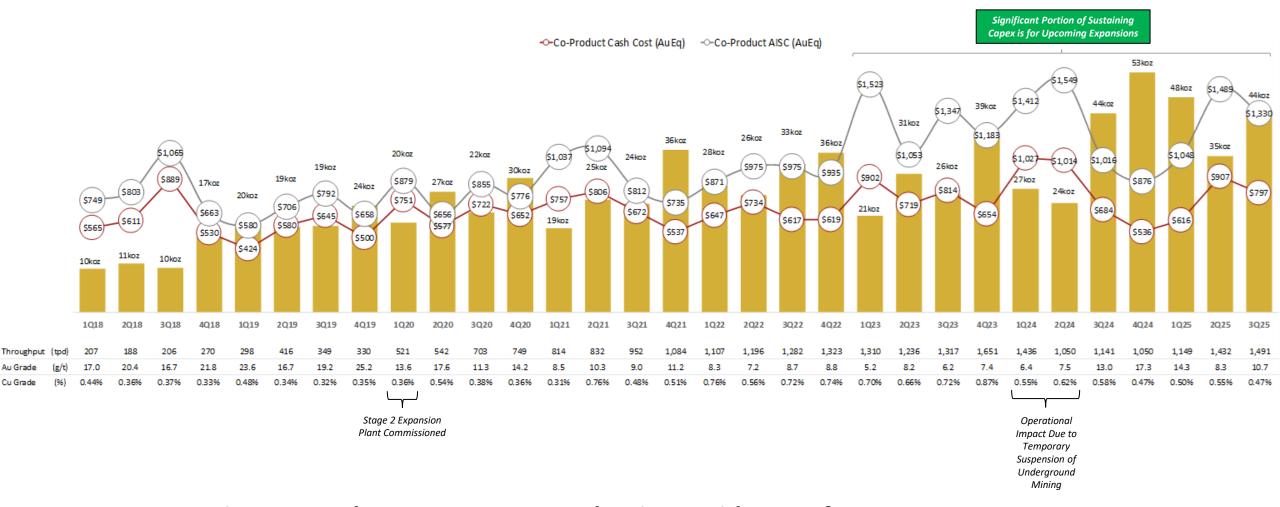
Plant on Care and

Maintenance

Targeting Late 2027 Commissioning

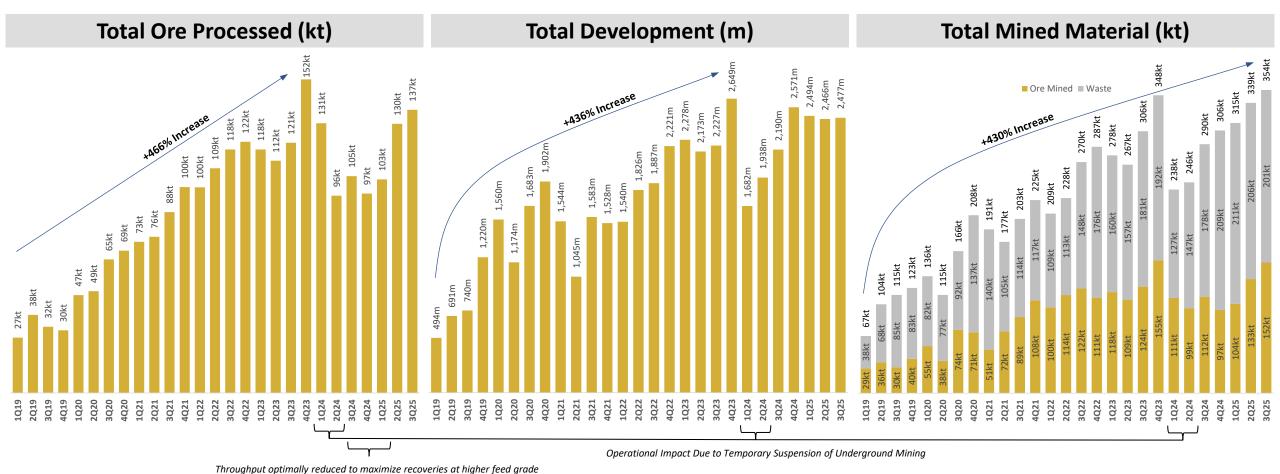
Stage 4
1,800,000 tpa
+400 koz AuEq pa
Via Low Capex Expansion

Via Low Capex Expansion of Stage 3 Plant (Upgrade Flotation & Filter Press).


<u>Stage 2A Plant Available</u>
<u>for Next Stage of</u>
Expansion.

The Stage 3 and 4 Expansions are fully financed, and as of October 31, 2025, 92% of growth capital has been spent or committed. The project remains on budget, first saleable production from new plant delivered in October 2025.

Operational Performance – Since Commercial Production


AuEq Production (koz), Cash Cost (\$/oz AuEq) and AISC (\$/oz AuEq)

K92 remains on Track to Meet 2025 Production Guidance of 160,000 to 185,000 oz AuEq Major Sustaining Capex Investment since 2023 is for Upcoming Expansions

Kainantu Mine Execution

Q3 achieved record material mined (ore + waste) with multiple daily tonnes to surface records in late-September via combination of commissioning of material pass and surface trucks operating in twin incline (Sept 27th: 5.8 kt; Sept 29th: 6.4 kt). Record development of 1,028m in October – Exceeds Stage 3 Requirement of 1km per month.

Note: Q1 head grade of 14.9 g/t AuEq or 14.3 g/t Au, 0.50% Cu and 11.1 g/t Ag

Near-Term Mine Transformation: Major Infrastructure Upgrades

1

Twin Incline

Scope: High Speed 2.9km twin incline, capable of +5

mtpa with conveyors **Status:** Effectively Complete

Impact: Transforms material handling efficiency with

large and high-speed travel way.

2

Ore Pass System

Scope: Raise Bore Ore and Waste Pass System to

connect Main Mine with Twin Incline

Status: First pass operational, second pass scheduled

for completion in Q1 2026

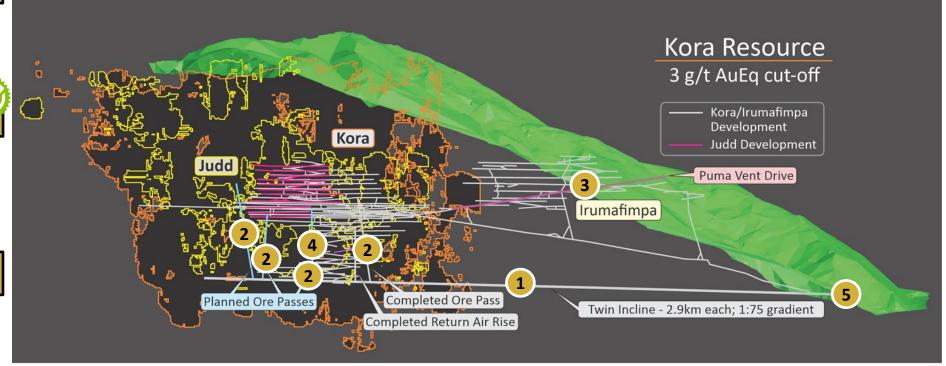
Impact: Transforms material handling efficiency, improves mining cycle at the Main Mine. Vast majority material to travel via the highly efficient twin incline.

3

Puma Vent Incline

Scope: Twinning of the existing puma incline for vent Status: Underway (targeting completion early-Q1 2026) Impact: +50m³/s upon breakthrough, up to ~4x airflow increase to main mine with fan upgrades from current flow rates, meets Stage 3 & 4 Expansion requirements. Additional operational efficiency via allowing one-way traffic flow in twin incline upon electrification of fan chamber (late-Q1 2026).

Internal Ramp System


Status: Internal Ramp Connecting the Main Mine to the

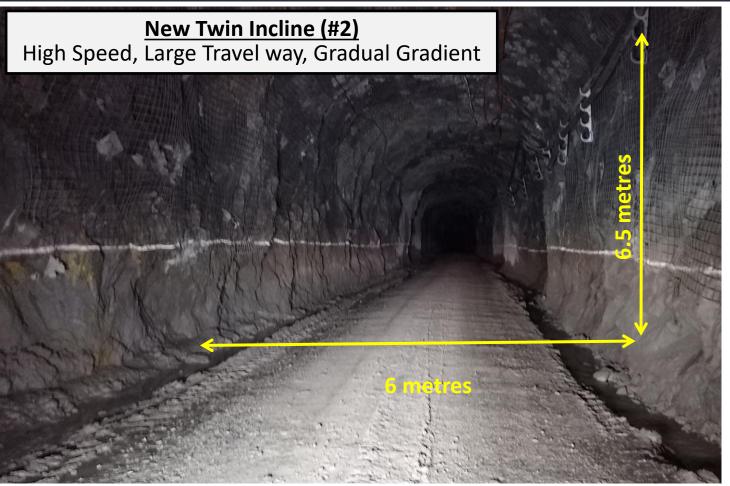
Highly Productive Twin Incline **Status:** Targeting completion Q1 2026

Impact: Major operational efficiency improvements as the Main Mine is accessible to the highly productive twin incline and all mining fronts connected via an internal ramp, allowing for one-way traffic flow.

Kora-Irumafimpa Planned Twin Incline and Development Long Section (Looking West)

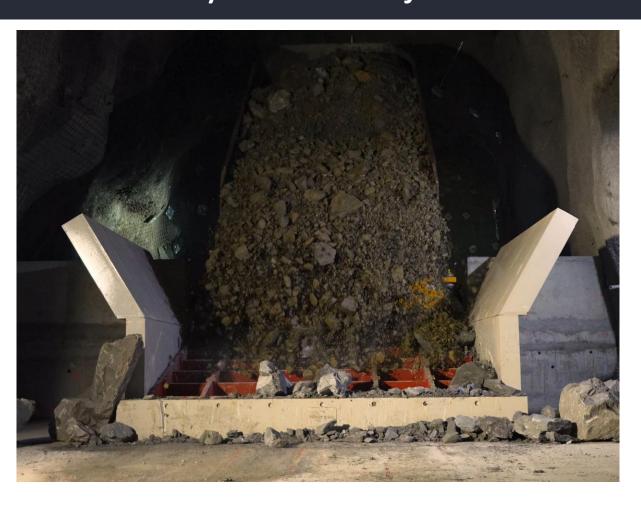
Pastefill System

Status: Targeting commencement of commissioning in mid-Q1 2026


Impact: Significant improvement to mining method plus mine flexibility via enabling mining in two directions vertically instead of currently one.

Underground Productivity To Be Transformed Through Various Near-Term Infrastructure Upgrades

Rapid Ore Transport - Twin Incline Complete



The Twin Inclines Are Effectively An Underground Expressway
Capable of Throughput Over 5 mtpa with Conveyors which is
Significantly Greater than the Stage 4 Expansion Requirements

Ore Pass System – Major Milestone with First Tonnes Moved

First Ore/Waste Pass Tonnes Moved in Early August

The Pass Significantly Improves Material Handling Productivity

Multiple surface haulage records achieved following material pass commissioning and integration of surface haulage trucks underground (eliminates need for rehandle)

Phase 2 Ventilation Upgrade Complete, Puma Incline Advancing

Phase 2 Ventilation Upgrade recently completed increasing total mine airflow +30%, from 150 m³/s to 200 m³/s – this has significantly reduced blasting re-entry times.

Work is well underway to complete commissioning of the Centralized Blasting System to reduce blast initiation times.

Once completed later this quarter, these combined improvements will enable transitioning to firing twice a day, from once a day currently. These combined improvements will increase UG operating hours per day and increase operational flexibility through firing 2x per day.

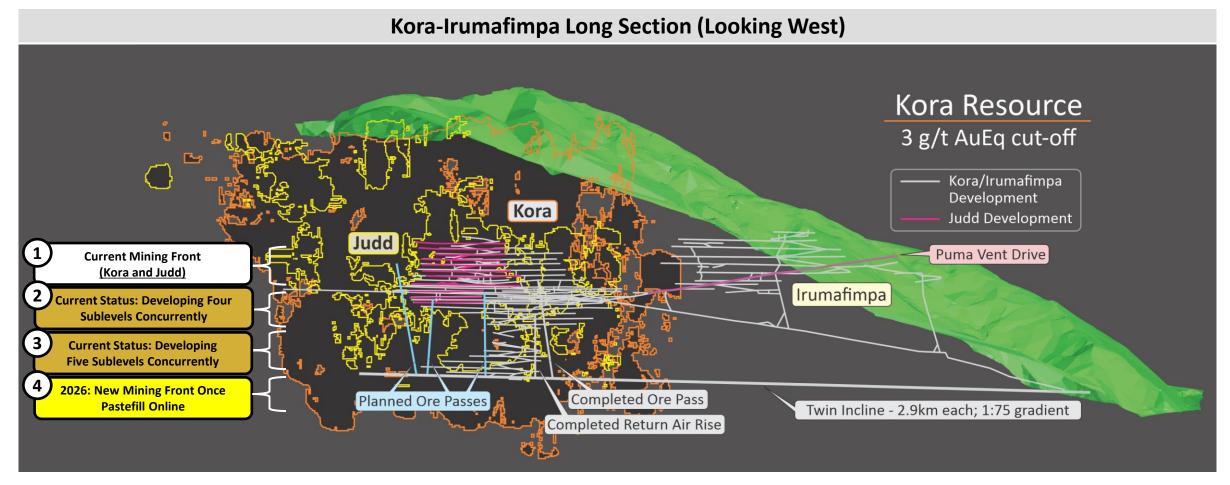
Further reduction in re-entry times expected upon breakthrough of Puma Incline (~40m remaining, Phase 3 Vent Upgrade). Expected to increase airflow from 200m³/s to 250m³/s – achieves the Stage 3 Expansion Ventilation Requirements.

Fan Chamber – New Primary Fans Commissioning Planned in Q1 2026

The new primary fans can deliver airflow up to 3x current rates to +600m³/s Primary Fan Chamber Civil works are complete, Fans to be installed in Q4 2025, Electrification planned to be completed in Q1 2026

Improved Mine Power Delivery – Primary Standby Power Station Complete

The 10.4 MW Primary Standby Power Station is now complete (from 8.8 MW)


This significantly improves site power reliability and synchronizes with mains power (hydroelectricity) to improve electrical supply stability.

Positive impact most significant for the underground mine.

Long lead orders have been placed for further expansions to 15.2 MW

3x Increase of Mining Fronts

There Has Been Effectively One Mining Front Producing the Bulk of the Ore Since Commercial Production (Front #1)

Triples to Three Fronts Producing Ore in Q1 2026 and Increases to Four Fronts in 2027

Multiple Production Stoping Enhancements Being Introduced

Surface operated teleremote system commissioned, allowing for up to 24 hr/day operation (during shift change)

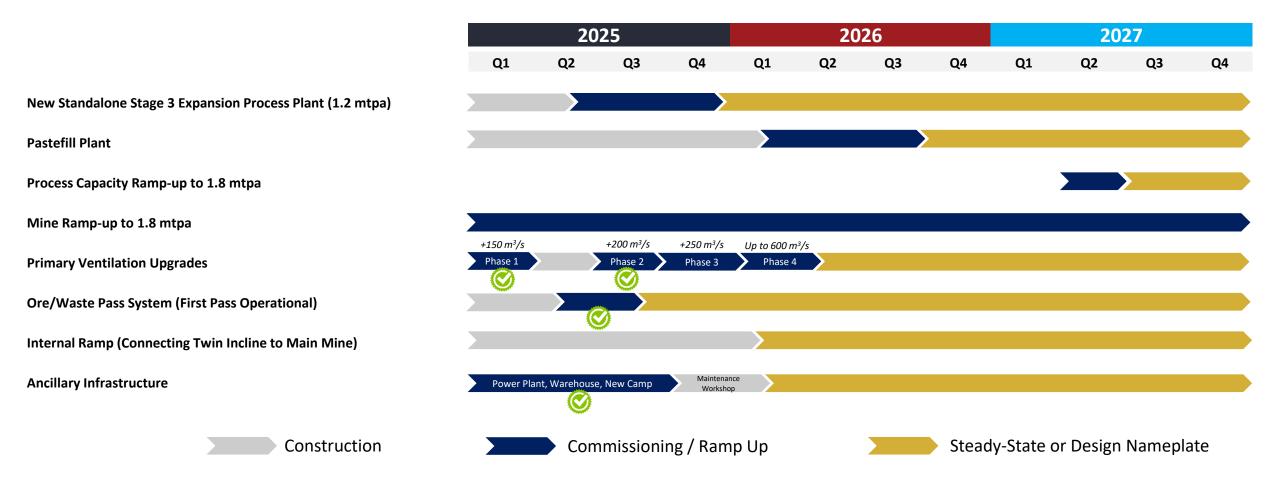
Significant Equipment (Load and Haul, Drills, Explosive & Ancillary) has been procured and arriving progressively over the next 12 months, with the majority arriving by mid-year 2026

Strong PNG Government and Key Stakeholder Support

February 2025 Site Visit – Delegation Led by the late Hon. Luther Wenge

March 2025 Site Visit – Delegation Led by Governor of EHP Province Hon. Simon Sia

August 2025 Site Visit – Delegation Led by Minister for Mining Hon. Rainbo Paita

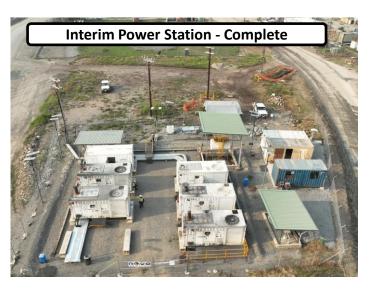


TV Source: TVWAN Online Channel, https://www.youtube.com/watch?v=ExkCTbb1VY4.

Near-Term Delivery of Stage 3 & 4 Expansions

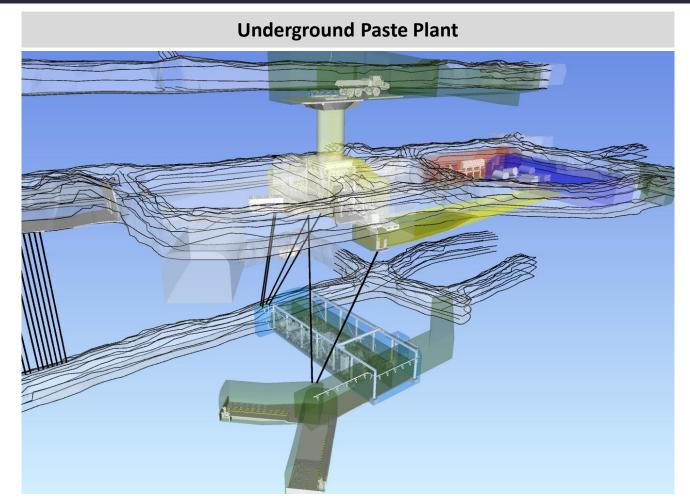
First saleable production from Stage 3 Expansion Process Plant recorded in early-October Process Plant officially inaugurated on October 16th, 2025

Stage 3 Expansion Process Plant



Construction of the New 1.2 Mtpa Process Plant Completed Under Budget

Ancillary Construction Projects Progressing Well



Significant amount of ancillary packages are complete, supporting the next phase of expansion

Stage 3 Expansion Update – Paste Plant Advancing

Surface Storage System Near Portal

Tailings Filtration Plant

Paste Fill Plant Front End Engineering and Design Complete, GR Engineering Completed and Quattro Engineering Well Advanced on Detailed Engineering and Design, All Paste Fill Plant Long Lead Items Arriving on Site, Early Earthworks Underway, and all Major Construction Contracts Have Been Awarded

Pastefill Plant Construction Underway

Tailings filter plant earthworks are complete, and civils are underway, earthworks for the surface storage facility is underway, and concurrently, the underground pastefill plant is progressing. Pastefill Plant commissioning targeting mid-Q1 2026.

Multiple High Priority Near-Mine Targets

Multiple High Priority Near-Mine Vein and Porphyry Targets

1

Kora & Kora Deeps (Vein)

Kora open to depth and along strike

2

Kora South & Judd South (Vein)

- Structure extends +1km beyond mining lease
- Outcrop and historical mining, previously undrilled

3

Judd & Judd Deeps (Vein)

- Subparallel to Kora, high-grade historical & recent intersections
- ~150-200m from existing mine infrastructure

4

Maniape and Arakompa (Vein)

- Arakompa: +2km strike, +800m vertical, +400m wide mineralized corridor
- Maniape: +1km strike, +200m vertical

5

Wera (Vein)

- Large 3.5km x 3.5km low-sulphidation epithermal vein system
- ~10km from Kora and Judd deposits

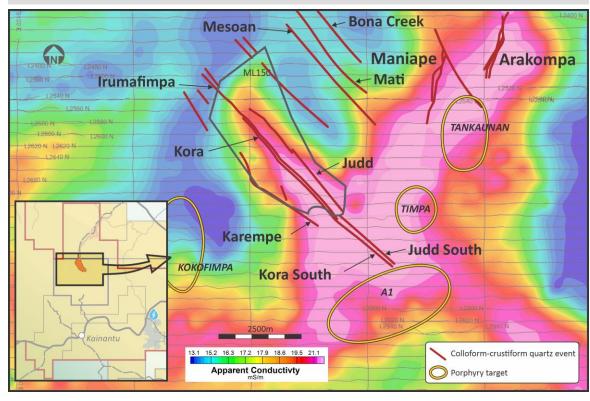
6

Karempe (Vein)

- Artisanal workings, presumed porphyry below high-grade veins
- ~400-450m from existing mine infrastructure

7

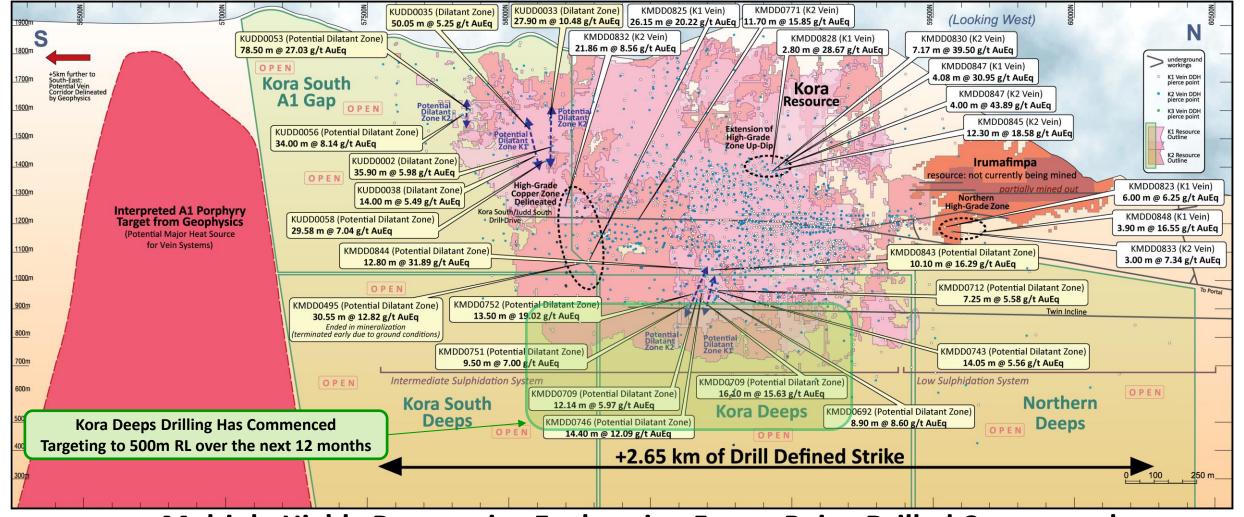
Mati, Mesoan and Bona Creek (Vein)


Surface geochemical sampling being conducted ahead of drill program

8

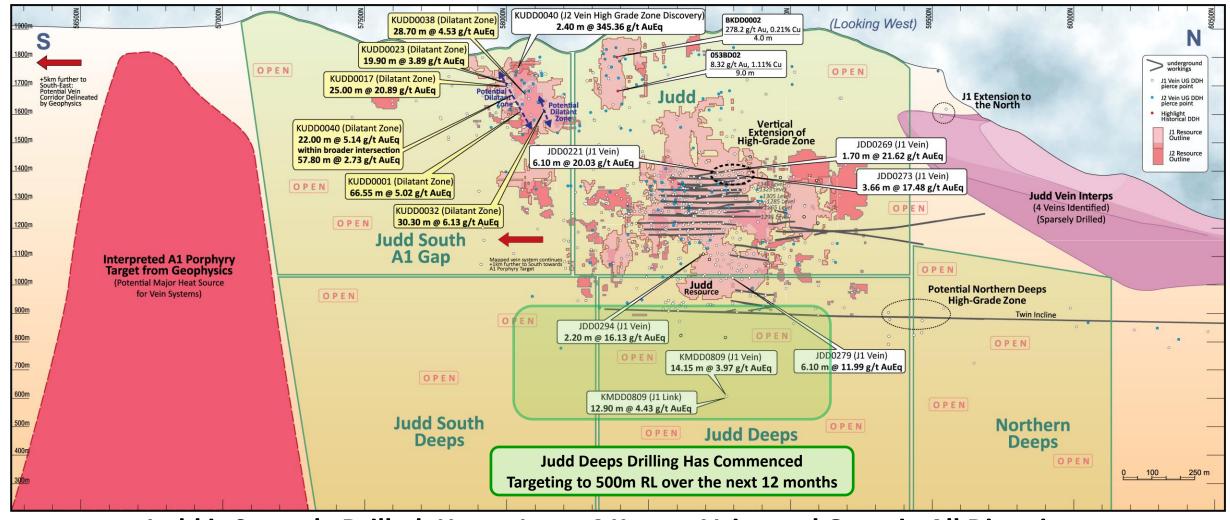
A1 (Porphyry)

 Latest advanced mobile MT geophysics confirms A1 as our #1 porphyry target


Airborne Geophysics and Target Locations

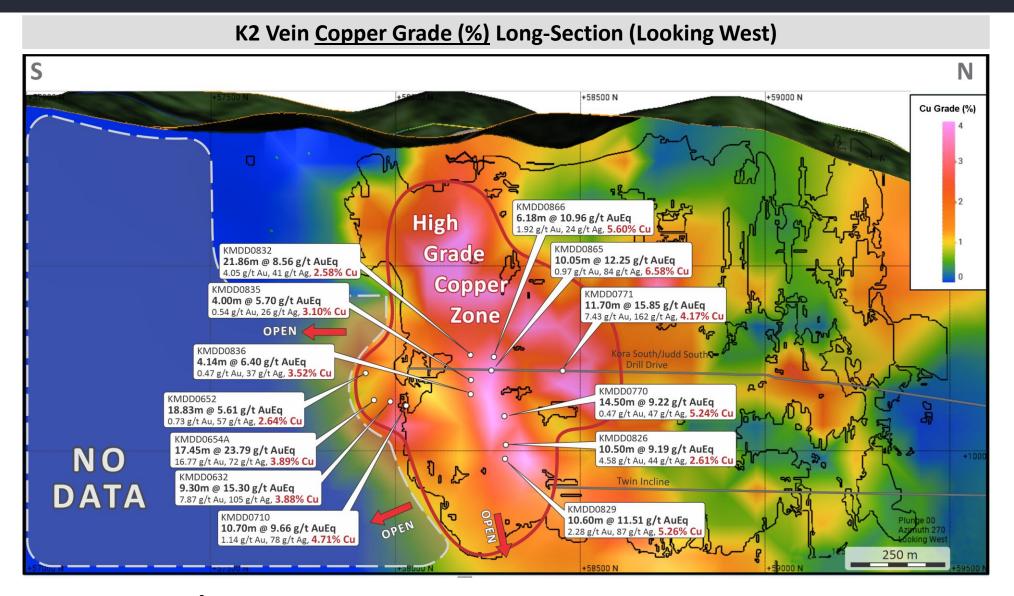
Significant Resource Expansion at Highly Prospective Near-Mine Vein Field Established Infrastructure = Rapid Transition from Discovery to Mining

Exploration Target: Kora, Kora South, Kora North & Kora Deeps



Multiple Highly Prospective Exploration Fronts Being Drilled Concurrently
Kora Deeps, Kora North and South Deeps Underway from
Twin Incline and Kora South Underway from 1205 Level Drill Drive

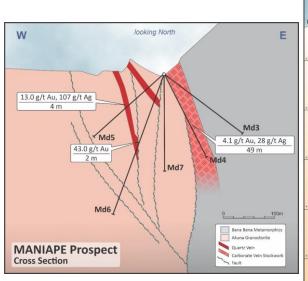
Judd and Judd South Vein System is Very Underexplored

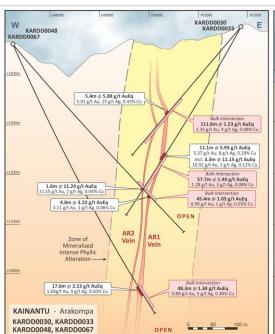

Judd is Sparsely Drilled, Has at Least 4 Known Veins and Open in All Directions

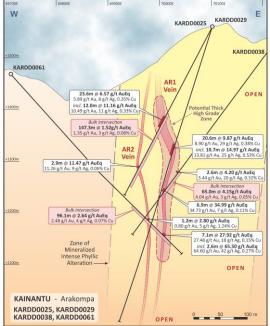
Significant Amount of Drilling Completed Since the Judd Resource and

Drill Defined Strike Length has Increased +130% Since End of 2021

Copper Grade Tenor Increasing to the South towards A1 Porphyry

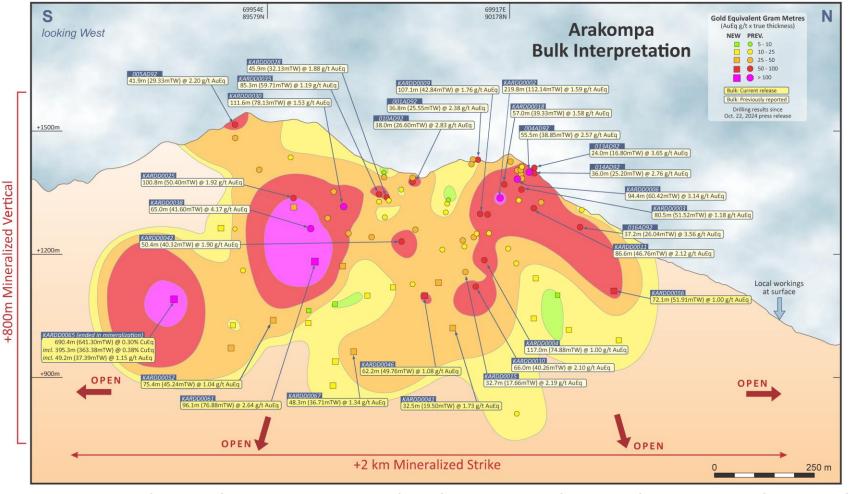

Kora South/Judd South Drill Drive Well Established for Step-Out Drilling


High Priority Exploration Targets: Arakompa and Maniape



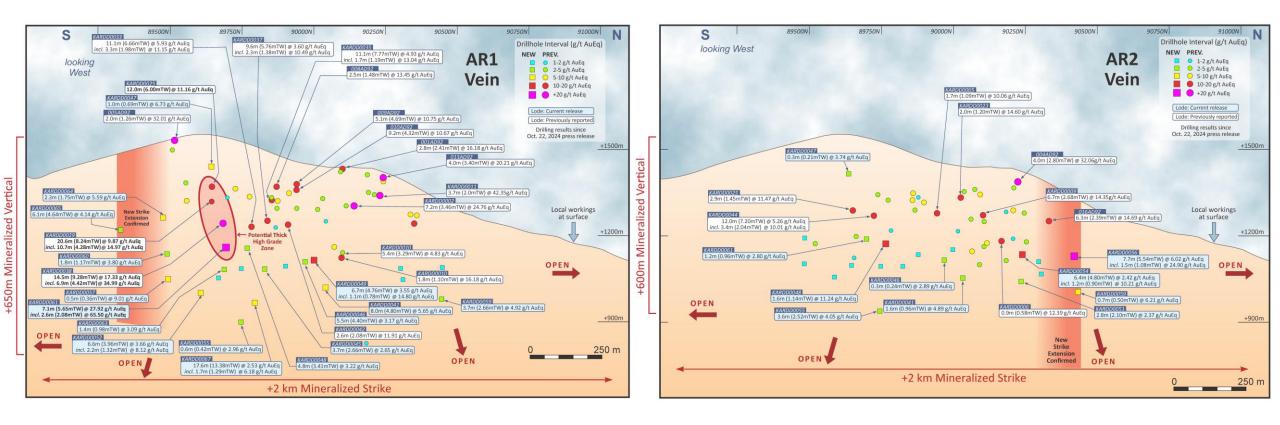
Arakompa and Maniape Veins Key Facts

- Arakompa Sparsely drilled, open along strike, at depth and along its width
 - Located ~4.5km from Kainantu process plant, with similar mineralization to the producing high grade Kora and Judd vein systems
 - The target size is very large, with mineralization demonstrated from drill holes, rock samples and surface workings for at least 2 km of strike, hosted within an +400 m wide mineralized intense phyllic altered package, and exhibits a vertical extent of +800 m
 - Maiden resource estimate targeting H1 2026
- Maniape ~1100m strike & 220m known vertical
 - 16 holes drilled, including: 49 m at 4 g/t Au (incl. 12.5 m at 8 g/t Au) and 7 m at 22 g/t
 - Work to date indicates Maniape is similar geologically to Arakompa



Sizeable Bulk Tonnage Zone Defined & Porphyry-Style Mineralization Discovered

Arakompa Target is Very Large: +2km Strike, +800m Vertical and +400m Wide Corridor – Open Along Strike, Depth & Width

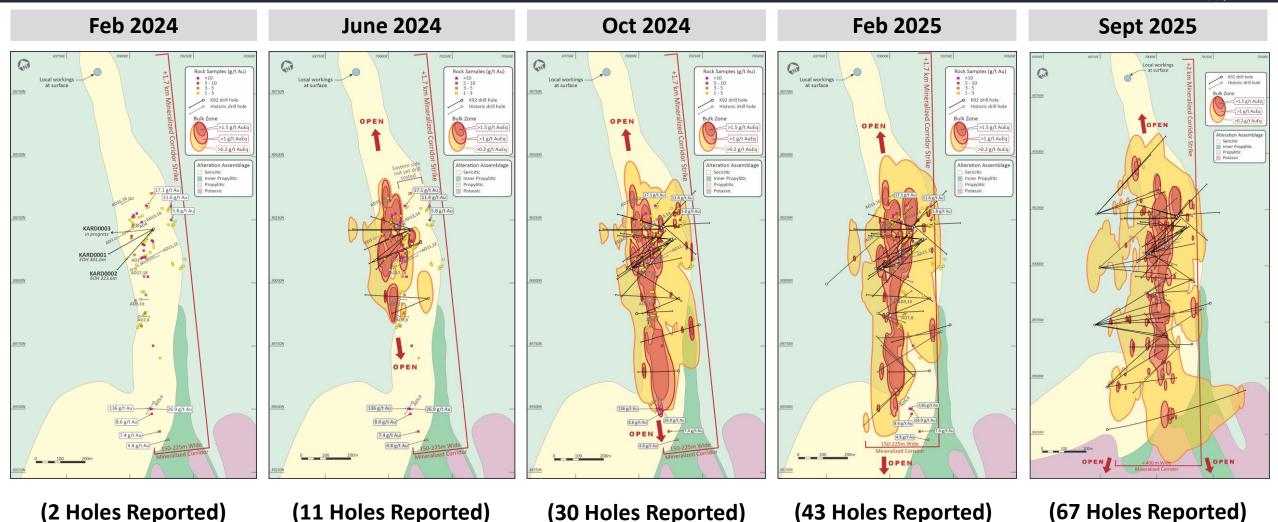

Southernmost step-out testing 600m x 600m copper-in-soil anomaly intersected significant Cu-Au mineralization 690m at 0.30% CuEq, incl 395m at 0.38% CuEq

Note: See slide 54 for complete grade information for intersections.

Two Major High-Grade Veins Confirmed to Date – AR1 and AR2

33

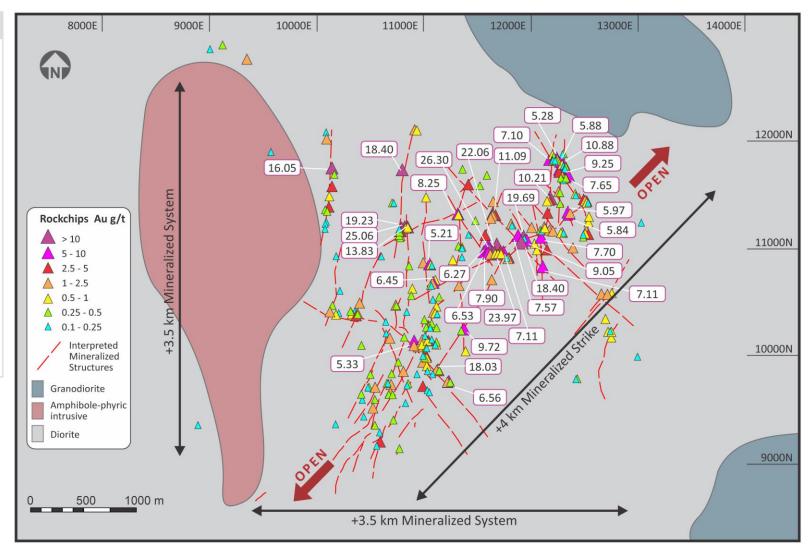
Drilling at Arakompa has delineated two major sub-parallel veins AR1 and AR2, defined over extensive strike and depth


Both veins open in multiple directions, with substantial average mineralisation widths

Note: See Slide 54 for complete grade information for intersections.

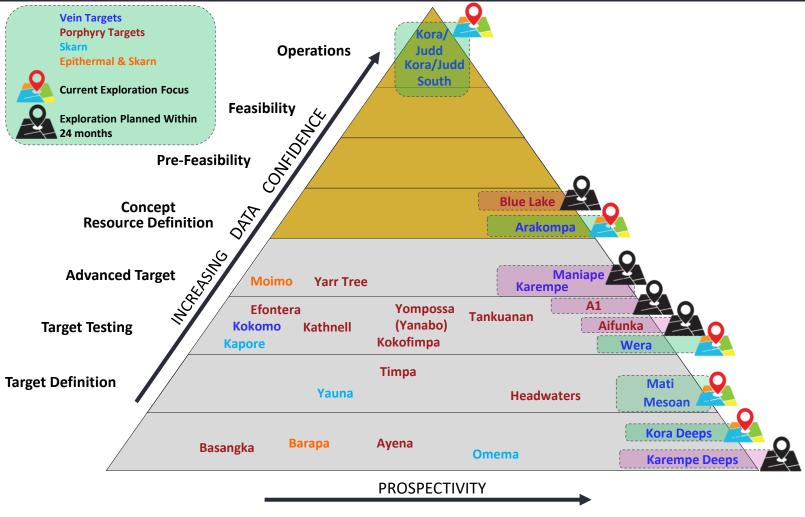
Of ~3 metres

Arakompa is a **Growing Very Rapidly**


Arakompa is rapidly & efficiently growing – just over 65% of strike has been tested. Two new surface diamond drill rigs are scheduled to arrive in early-Q1 2026, supporting a significant ramp-up in exploration.

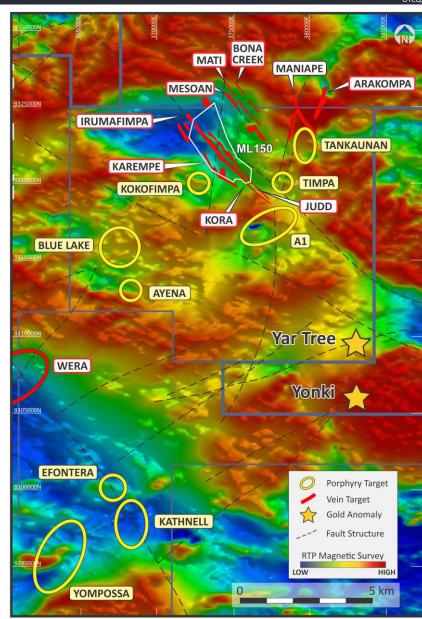
New Greenfields Discovery – Large Vein System at Wera

Wera Vein System Key Facts


- Wera low-sulphidation epithermal gold system
- Road accessible and located ~10km SW from Kora and Judd
- Target identified from airborne geophysics MobileMT Survey and review of historical data
- Maiden exploration program (commenced in July 2024), focusing on rock chip and trenching, has defined a large 3.5km by 3.5 km vein system that is open along strike in both directions
 - High-grade rock chip samples, include:
 - 26.30 g/t Au, 25.06 g/t Au, 23.97 g/t Au, 22.06 g/t Au, 19.69 g/t Au, 19.23 g/t Au, 18.40 g/t Au, 18.40 g/t Au, 18.03 g/t Au, 16.05 g/t Au, and 13.83 g/t Au
 - Lies within the major NNE regional mineralized structural corridor that hosts Kora, Judd, and Arakompa
- Maiden scout drill program is currently underway at Wera

Maiden Greenfields Exploration Program Has Defined a Large 3.5 km by 3.5 km Mineralized System Located 10km South-West from Kora and Judd – Drilling is underway

Significant Pipeline of Highly Prospective Exploration Targets



Large underexplored 836.8km² land package

Prospective for multiple deposit types with many high priority targets

Potential to Increase Exploration Budget to ~USD40m after Stage 3 Delivery

192 MINING INC.

Appendix

Management & Directors

			OTCQX: KNTNF
Management Tear	n	Board of Dire	ectors
John Lewins CEO & Director	Mineral engineer with +35yrs of global experience (Africa, Australia, Asia, N. America & former Soviet Union) at project development, operational and corporate level. Former GM of MIM Holdings, MD of Platinum Australia and Executive Director of African Thunder Platinum SA. Became CEO of K92 in Aug 2017; previously COO.	Anne Giardini Chair	Over 35 years' experience as a lawyer, senior executive, director, journalist and author, and has held several senior advisory roles. Former General Counsel and President of Weyerhaeuser's Canadian subsidiary. Ms. Giardini currently serves on the boards of Pembina Institute and CMHC and as Chair of the BC Achievement Foundation. Former Chair of the Greater Vancouver Board of Trade and served on numerous boards
David Medilek President & COO	Mining professional with +18 yrs of mining capital markets, corporate strategy and technical operating experience. Former President and VP Business Development & Investor Relations of K92 Mining, Equity Research Analyst at Macquarie Group Limited, Mining Investment Banker at Cormark Securities Inc. and		including Weyerhaeuser, Nevsun Resources, Thompson Creek Metals, HydroOne, and TransLink. In 2016, Ms. Giardini was made an Officer of the Order of Canada and in 2018 she was admitted to the Order of British Columbia.
	Mining Engineer at Barrick (Western Australia). Mr. Medilek is a licensed Professional Engineer in BC, Canada and CFA® charterholder*.	John Lewins	See Management Team
Justin Blanchet CFO	Previously CFO of several TSXV-listed mining companies. Mr. Blanchet has 20 yrs of financial reporting, audit, treasury, business development, and regulatory compliance experience in the mining industry and has worked on international projects throughout the world. Mr. Blanchet is a Canadian Chartered Professional Accountant and a U.S. Certified Public Accountant (Washington).	Cyndi Laval	Lawyer with +25 yrs of experience specializing in areas of mining law, corporate finance, M&A, corporate governance and securities. Currently a Partner in Gowling WLG's Vancouver office. Ms. Laval was also named one of Vancouver's 30 leading lawyers by the National Post and is recognized as a leading lawyer in multiple publications. Prior to joining private law practice, Ms. Laval worked in the TSXV Exchange's policy
Chris Kinver	Mining engineer with 20yrs of underground operations and mine development experience in PNG, Australia, South America, Africa and the United Kingdom. Former Project Director Kora Expansion, Mining		department.
VP Projects & Engineering	Manager and Evaluation and Studies Manager at K92. Held roles of Project Manager with OceanaGold, Underground Mine Manager with BHP, Underground Mine Manager with Barrick and Principal Engineer at Wardell Armstrong LLP. Mr. Kinver holds a First Class Western Australian Mine Managers' Certificate and registrations with the Institute of Engineers Australia, The Engineering Institution of Zambia, and Registered Engineers of Tanzania.	Mark Eaton	Experienced investment professional with +20yrs experience in equity capital markets, focused on the resource sector. Held the role of MD Global Mining Sales at CIBC, Manager of US Equity Sales at CIBC, and former Partner and Director of Loewen Ondaatje McCutcheon Ltd. Mr. Eaton is the current Executive Chairman and former CEO of Belo Sun Mining and has served as director or executive of several mining companies.
Robert Smillie VP Exploration	Mr. Smillie is a geologist with over 35 years of experience specializing in epithermal gold and copper-gold systems across the Asia Pacific. While at Ok Tedi Mining, his team discovered the Townsville project, a major copper-gold find and the company's most significant near-mine discovery in over 30 years. He has led large exploration programs with budgets up to AUD\$25 million and worked with OceanaGold, WMC Resources, Calibre Mining, and others. Mr. Smillie holds an MBA from Victoria University, an MSc and BSc in Geology from Otago University, and is a Fellow of SEG and AusIMM.	Saurabh Handa	Chartered Professional Accountant with diverse senior experience in finance, mergers and acquisitions and multi-jurisdictional public company disclosures. Currently Principal of Handa Financial Consulting Inc. Former CFO of Titan Mining Corp., VP, Finance of Imperial Metals Corp., CFO of Meryllion Resources Corp., CFO of Yellowhead Mining Inc., Controller for SouthGobi Resources Ltd. and Senior Staff Accountant at Deloitte and Touche LLP.
Stanley Komunt VP Community Affairs and External Relations	Mr. Komunt has over 25 years of experience in community and government relations in the mining industry. He served as Country Manager for Newcrest and Newmont in PNG, leading negotiations and managing regulatory, stakeholder, and community engagement. He has held senior roles at Nautilus Minerals, Morobe JV, Highlands Pacific, and Ok Tedi Mining. Mr. Komunt is a member of the Australian Institute of Company Directors and serves as VP PNG for the Australia PNG Business Council and Director of PNG MVIL.	Nan Lee	Professional Engineer with over 30 years of experience as a mining and geo- environmental engineer, project manager, senior executive, and advisor in the mining industry. Ms. Lee's experience in the uranium sector includes 15 years as an independent consultant leading environmental assessments and managing preliminary feasibility studies for tailings management facilities and a greenfield mine development proposals. More recently, Ms. Lee was with UEX Corporation as VP of Project
Philip Samar Senior Advisor, Government & Community Affairs	Mr. Samar has spent 20 years through to 2018 working for the Mineral Resources Authority (MRA) of Papua New Guinea, the government body responsible for regulating the exploration and mineral sector. In his last six years as Managing Director, Mr. Samar had a significant leadership role within the country and has regularly interacted with multiple mining industry stakeholders including: government, international		Development, providing strategic direction for development of projects and project evaluations for potential acquisitions, in addition to managing economic studies.

*CFA® and Chartered Financial Analyst® are registered trademarks owned by CFA Institute.

organizations, landowners and foreign investors.

2030 GHG Emissions Reduction Target

40% lower carbon intensity compared to global average

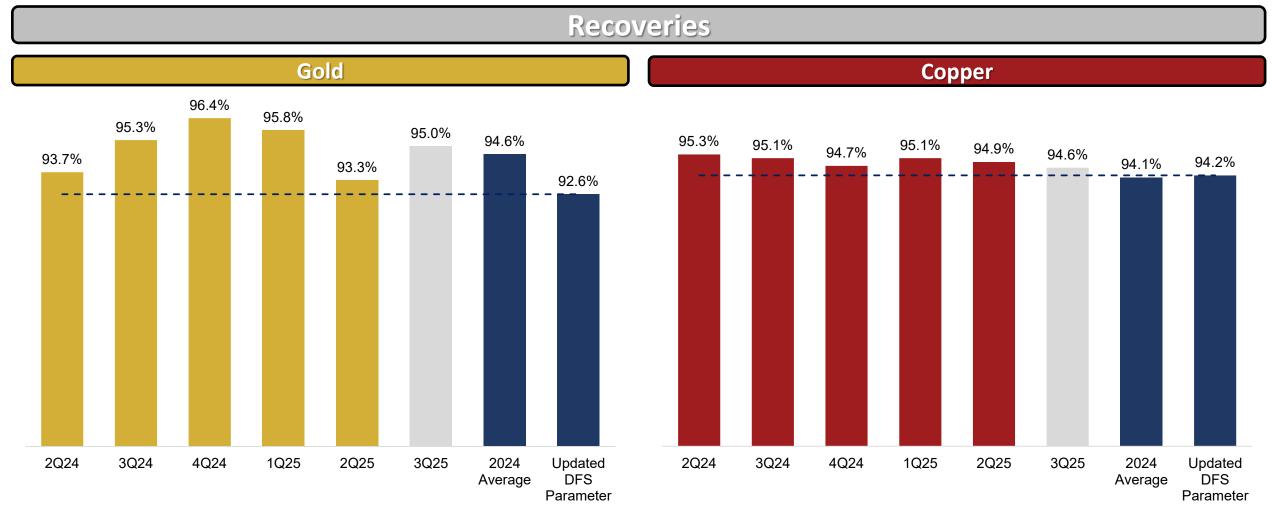
K92 has set a target to reduce Scope 1 and Scope 2 emissions by 25% on a business-as-usual basis by 2030

Kainantu has below industry average emissions and we are committed to further improving our energy and GHG emissions profile further

Operational Guidance - Investing in Our Major Expansion

Key Figures

	Amount
2025 Production	160,000 to 185,000 oz AuEq
2025 By-product Cash Cost	US\$710 to US\$770/oz Au
2025 By-product AISC	US\$1,460 to US\$1,560/oz Au
2025 Co-product Cash Cost	US\$830 to US\$890/oz AuEq
2025 Co-product AISC	US\$1,490 to US\$1,590/oz AuEq
2025 Exploration	US\$17 to US\$20 million
2024 Growth Capital Spent	US\$102 million
2025 Growth Capital	US\$105 to US\$110 million


2025 delivers a major investment going into the operation to transform Kainantu and K92 into a low-cost, Tier 1 Mid-Tier Producer upon delivery of the Stage 3 Expansion

Key Highlights

- **Production Growth:** Production in the second half of 2025 is expected to be the strongest, benefiting from the new 1.2 mtpa Stage 3 Expansion.
- Cost Adjustments: The moderate increase in 2025 cash costs and AISC is aligned with the higher sustaining capital Updated DFS, in addition to a moderate amount of sustaining capital that has shifted from 2024 to 2025
- Growth Capital: Total growth capital for the Stage 3 and 4 Expansions of \$216 million
 - By the end of October 2025, 92% of the Stage 3 and 4 Expansion growth capital has been either spent or committed, with the project remaining on budget.
 - Largest package, the Stage 3 Process Plant, was awarded on a lump-sum fixed price basis to GR Engineering, significantly de-risking the project (see July 24, 2023 press release)
 - The remaining major package, the Pastefill Plant, is well advanced with major construction contracts awarded, long-lead items arriving on site, detailed engineering and design complete, earthworks complete and civil works commenced, and strong progress across surface and underground works. Commissioning remains on schedule for mid-Q1 2026.

Strong Process Plant Performance

Process Plant Has Performed Extremely Well
Six Consecutive Quarters Exceeding Updated DFS Recovery Parameters

Kora Deposit Overview & Mining Conditions Summary

Deposit:	Intermediate Sulphidation Multiple sub-vertical Au-Cu-Ag sulphide veins Focus is on the K1 and K2 veins, with the system also hosting other veins and link structures											
AuEq Reserve Grade:	$\sqrt{8.6g/t}$ − 6.6g/t Au, 19g/t Ag, 1.1% Cu (3.5g/t cut-off) with multiple higher-grade zones (+20g/t)											
Thickness:	√ ~3-5m average range											
Orientation:	✓ Sub-Vertical											
Continuity:	√ Highly Continuous											
Size Potential:	√ +1.5km strike (open) by +1km vertical (open)											
Access:	✓ Incline ramp access (deposit at higher elevation than portal), providing significant operational efficiencies (dewatering and materials transport) through leveraging gravity											
Geotech:	✓ Competent – Amenable to long hole on both K1 and K2 Veins											

Kora has the 'right ingredients' for an efficient and productive underground mine

Judd Deposit Overview & Mining Conditions Summary

Deposit:	Intermediate Sulphidation Multiple sub-vertical Au-Cu-Ag sulphide veins, located ~150-200m east of Kora Focus is on the J1 vein, with the system also hosting at least three other veins											
AuEq Reserve Grade:	√ 8.1g/t – 7.1g/t Au, 14g/t Ag, 0.5% Cu (3.5g/t cut-off) with higher grade zones (+15g/t)											
Thickness:	√ ~3-5m average range											
Orientation:	✓ Sub-Vertical											
Continuity:	√ Highly Continuous											
Size Potential:	✓ Open in all directions – high grade underground was discovered recently in Q4 2020 and limited exploration completed to date											
Access:	✓ Leverages Kora's infrastructure resulting in limited waste development required to access the deposit. Like Kora, deposit is above main infrastructure, providing significant operational efficiencies (dewatering and materials transport) through leveraging gravity											
Geotech:	✓ Competent – Amenable to highly efficient long hole on J1											

Solid Performance to Date from Production Stoping at Judd

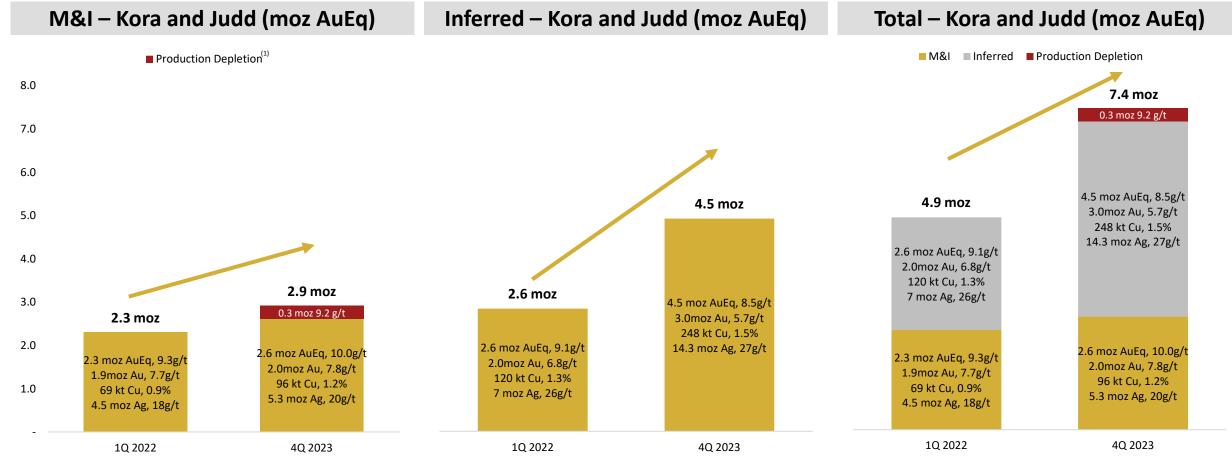
Kora and Judd Independent Reserve Estimate

Kora and Judd Deposit Reserve Summary (January/2024)

	Tonnes	G	old	Si	lver	Сор	per	Gold Equivalent				
	mt g/t moz g		g/t	moz	%	kt	g/t	moz				
Kora Deposit												
Proven	2.95	7.4	0.70	19	1.9	1.1	31	9.4	0.89			
Probable	2.52	5.7	0.46	19	1.6	1.0	26	7.6	0.61			
Proven & Probable	5.47	6.6	1.16	19	3.4	1.1	57	8.6	1.50			
Judd Deposit												
Proven	0.24	8.3	0.06	17	0.1	0.6	1	9.4	0.07			
Probable	0.47	6.5	0.10	13	0.2	0.5	2	7.5	0.11			
Proven & Probable	0.71	7.1	0.16	14	0.3	0.5	4	8.1	0.18			
Consolidated												
Total Proven	3.19	7.5	0.77	19	2.0	1.0	33	9.4	0.96			
Total Probable	2.99	5.8	0.56	18	1.8	1.0	28	7.6	0.73			
Total Proven & Probable	6.18	6.7	1.32	19	3.7	1.0	61	8.5	1.69			

- The long-term metal prices used for calculating the financial analysis are USD \$1,900/oz gold, USD \$4.50/lb Copper, USD \$25/oz Silver.
- Gold Equivalents are calculated as AuEq = Au g/t + Cu % *1.62404 + Ag g/t*0.01316, based on commodity pricing. Metal payabilities and recoveries are not incorporated into this formula.
- A minimum mining width of 3.0 m has been applied for stoping, inclusive of a 1.0 m dilution skin at contained Mineral Resource grade.
- In addition to the 1.0 m dilution skin, dilution of 5% has been added for Avoca mined stopes and 2.5% for long hole stoping with paste fill. Where a stope is within 5.0 m proximity of the HW or FW of the fault gouge, an additional 1.0m of dilution was added at a grade averaging 1.42 g/t AuEq. This results in a total average dilution of 27.8%.
- Mining recoveries of 90% have been applied to Avoca mined stopes, and 95% for long hole stoping with paste fill.
- A cut-off grade of 3.5 g/t AuEq was used to define stoping blocks. Stope shapes with uneconomic development were excluded. The cut-off grade takes into account site operating costs, G&A costs, sustaining capital costs and relevant processing and revenue inputs.
- Measured Mineral Resources were used to report Proven Mineral Reserves.
- Indicated Mineral Resources were used to report Probable Mineral Reserves. No Measured Mineral Resources were used to report Probable Mineral Reserves.
- Tonnage and grade estimates include dilution and recovery allowance.
- The Mineral Reserves reported are not added to Mineral Resources.

Kainantu Consolidated NI 43-101 Resources

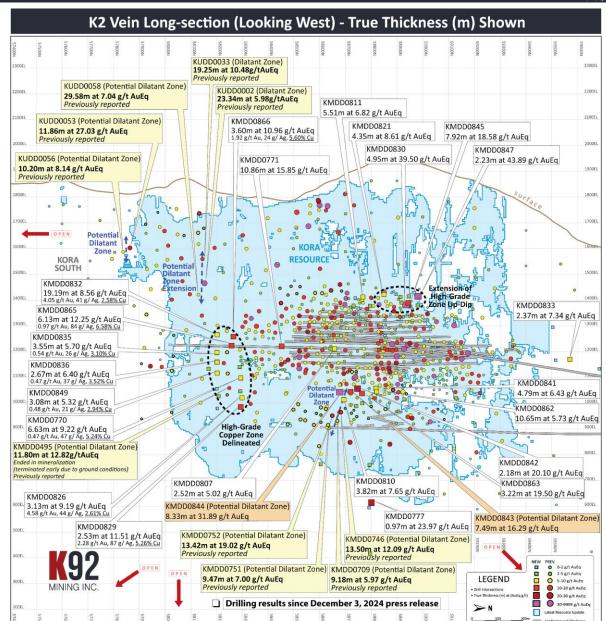


Kora and Judd Deposit Resource Summary (September/2023)

	Tonnes	G	old	Sil	ver	Cop	per	Gold Equivalent				
	mt	g/t	moz	g/t	moz	%	kt	g/t	moz			
Kora Deposit												
Measured	3.7	8.7	1.0	21	2.5	1.2	45	11.0	1.3			
Indicated	3.1	7.0	0.7	22	2.2	1.3	41	9.4	1.0			
Measured & Indicated	6.9	7.9	1.8	21	4.7	1.3	86	10.2	2.3			
Inferred	14.3	5.6	2.6	29	13.2	1.6	231	8.6	3.9			
Judd Deposit												
Measured	0.4	9.1	0.1	23	0.2	0.8	3	10.6	0.1			
Indicated	0.8	6.4	0.2	16	0.4	0.7	6	7.8	0.2			
Measured & Indicated	1.2	7.2	0.3	17	0.7	0.8	9	8.7	0.4			
Inferred	2.3	6.3	0.5	16	1.1	0.8	17	7.7	0.6			
Consolidated												
Total Measured	4.1	8.8	1.2	20	2.7	1.2	48	10.9	1.5			
Total Indicated	4.0	6.9	0.9	21	2.6	1.2	47	9.1	1.2			
Total Measured & Indicated	8.1	7.8	2.0	21	5.3	1.2	96	10.0	2.6			
Total Inferred	16.5	5.7	3.0	27	14.3	1.5	248	8.5	4.5			

Efficient and Systematic Exploration – Kora and Judd

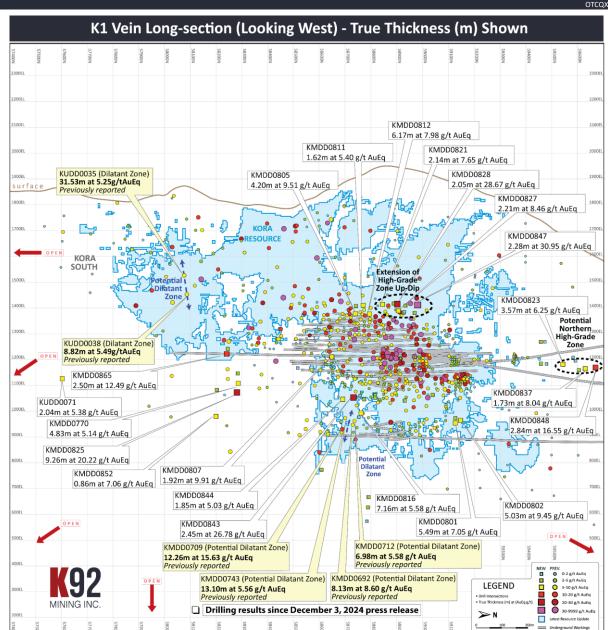
K92 Has Successfully Executed on A Systematic Exploration Program Significantly Growing the Resource Base and Ramping Exploration While Keeping Discovery Costs Low at <US\$7.5/oz AuEq


Latest Drilling Results Kora-Kora South – K2 Vein (June 5, 2025)

Key Facts

- All holes intersected mineralization
- Dilatant zone significantly expanded up-dip, located ~100m from existing underground infrastructure — supporting near-term bulk mining potential:
 - KMDD0844 12.80 m at 31.89 g/t AuEq (8.33 m true thickness)
 - KMDD0843 10.10 m at 16.29 g/t AuEq (7.49 m true thickness)
- Infill and step out drilling within Kora-Kora South extended high-grade zones in multiple directions, including up-dip from main underground mining area:
 - KMDD0830 7.17 m at 39.50 g/t AuEq (4.95 m true thickness)
 - KMDD0845 12.30 m at 18.58 g/t AuEq (7.92 m true thickness)
 - KMDD0847 4.00 m at 43.89 g/t AuEq (2.23 m true thickness)
- High-grade copper zone delineated at K2 to the south, over a +300m vertical extent from latest drilling:
 - KMDD0865 10.05 m at 12.25 g/t AuEq (6.13 m true thickness)
 0.97 g/t Au, 84 g/t Ag, 6.58% Cu
 - KMDD0829 10.60 m at 11.51 g/t AuEq (2.53 m true thickness)
 2.28 g/t Au, 44 g/t Ag, 5.26% Cu
 - KMDD0770 14.50 m at 9.22 g/t AuEq (6.63 m true thickness)
 0.47 g/t Au, 47 g/t Ag, <u>5.24% Cu</u>

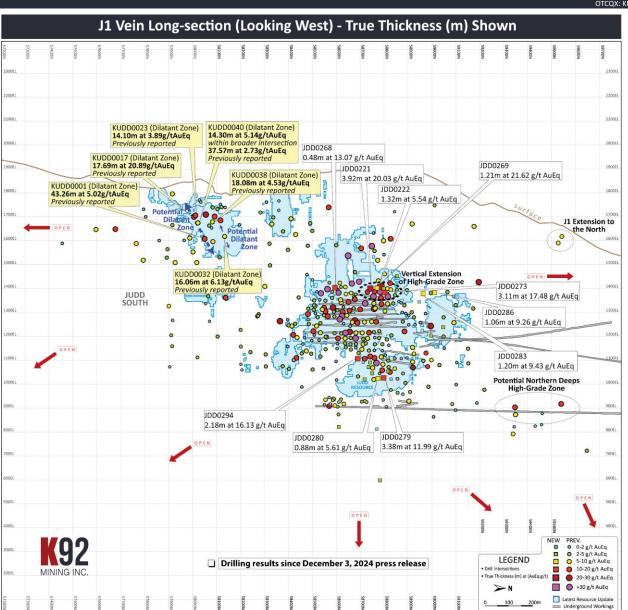
Exploration at Kora significantly ramping up from twin incline and 1205 Drill Drive



Latest Drilling Results Kora-Kora South – K1 Vein (June 5, 2025)

Key Facts

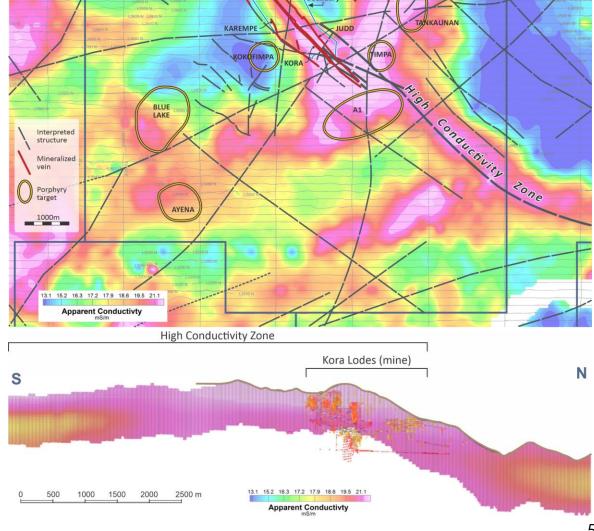
- All holes intersected mineralization
- High-grade zone extended up-dip from main underground mining area with higher grades than resource model in multiple zones, including:
 - KMDD0847 4.08 m at 30.95 g/t AuEq (2.28 m true thickness)
 - KMDD0828 2.80 m at 28.67 g/t AuEq (2.05 m true thickness)
- New potential high-grade zone identified to the north, outside the 2023
 MRE:
 - KMDD0848 3.90 m at 16.55 g/t AuEq (2.84 m true thickness)
 - KMDD0823 6.00 m at 6.25 g/t AuEq (3.57 m true thickness)
- Multiple high-grade copper zone intersected to the south:
 - KMDD0825 26.15 m at 20.22 g/t AuEq (9.26 m true thickness)
 7.32 g/t Au, 165 g/t Ag, 7.01% Cu
 - KMDD0865 4.10 m at 12.49 g/t AuEq (2.50 m true thickness)
 0.63 g/t Au, 69 g/t Ag, 7.06% Cu
- Kora has shown increased grade tenor at depth making the extended strike defined in both the K1 and K2 veins highly prospective
 - Underground drilling of Kora South underway from the 1205RL Drill Drive
 - Kora Deeps drilling underway from twin incline
- Kora remains open along strike and at depth.


Latest Drilling Results Judd-Judd South – J1 Vein (June 5, 2025)

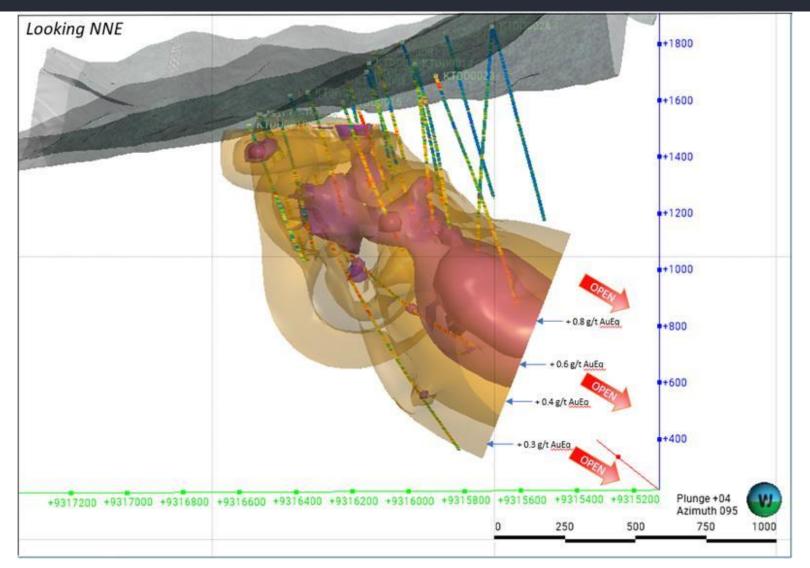
Key Facts

- All holes intersected mineralization
- Multiple high-grade intersections recorded continuing to extend high-grade mineralization up-dip and below the main mine:
 - JDD0221 6.10 m at 20.03 g/t AuEq (3.92 m true thickness)
 - JDD0273 3.66 m at 17.48 g/t AuEq (3.11 m true thickness)
 - JDD0269 1.70 m at 21.62 g/t AuEq (1.21 m true thickness)
 - JDD0279 6.10 m at 11.99 g/t AuEq (3.38 m true thickness)
 - JDD0294 2.20 m at 16.13 g/t AuEq (2.18 m true thickness)
- Drilling since maiden Judd Resource (Dec 31, 2021 effective date) has extended the known strike length of the Judd-Judd South Vein system by +130%.

Judd, Judd South & Northern Deeps is very underexplored and open in all directions


Airborne Geophysics Identifies Many New Targets

Key Facts


- Advanced MobileMT deep penetrating airborne geophysics flown over the entire ~830 km² land package
- First major geophysics program completed on property in +10 years
- Results demonstrate an extensive untested potential strike length to Kora-Kora South and Judd-Judd South vein systems beyond the A1 porphyry for several kilometres to the SE.
 - This is demarcated via a High Conductivity Zone
- Results also correlated well with other known mineral deposits and conductive bodies
- Multiple new vein and porphyry targets on all licenses have also been identified.

Geophysics has outlined the potential to extend Kora-Kora South & Judd-Judd South for kilometres

Blue Lake Porphyry Project - Significant Potential to Grow Resource Size

10.8 moz AuEq / 2.9 blbs CuEq Maiden Inferred Resource Declared in August 2022 Grade Tenor Increasing with Depth & High Grade Potassic Core is Open at Depth

Blue Lake Porphyry Project – 14.6 moz Maiden Resource (August 2022)

Large 14.6 moz AuEq Inferred Resource

Nearly every hole hit – Discovery Cost of ~\$650/oz AuEq per m or <\$1/oz AuEq

In-pit resource and higher grade core open at depth

In Papua New Guinea, Porphyries Tend to Cluster – Multiple Targets Nearby

Blue Lake Resource Summary (August 2022)

		Tonnes	Go	old	Si	ilver	Cop	pper	Gold Equivalent				
		mt		moz	g/t	moz	%	mt	g/t	moz			
	Blue Lake												
1	Inferred	686	0.19	4.2	2.4	53.6	0.21	1.4	0.66	14.6			

- Estimates are based on Technical Report titled, "Independent Technical Report, Mineral Resource Estimate Blue Lake Porphyry, Kainantu Project, Papua New Guinea".
- The Independent and Qualified Person responsible for the mineral resource estimate is Simon Tear, P.Geo. of H & S Consultants Pty. Ltd., Sydney, Australia, and the effective date of the Mineral Resource is 1st August, 2022.
- Mineral resources are not mineral reserves and do not have demonstrated economic viability.
- Resources were compiled at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 g/t AuEq cut-off grades.
- Density was based on 2,473 measured density data recordings (weighed core trays and measured core) which were composited and subsequently modelled unconstrained using Ordinary Kriging. Reported tonnage and grade figures are rounded from raw estimates to reflect the order of accuracy of the estimate.
- Minor variations may occur during the addition of rounded numbers.
- Estimations used metric units (metres, tonnes and g/t)
- Gold equivalents are calculated as AuEq = Au g/t + Cu%*2.0629 + Ag g/t*0.0125. Gold price US\$1,600/oz; Silver US\$20/oz; Copper US\$3.75/lb. Metal recoveries are incorporated in the formula and are Au 67%, Ag 67% and copper 86% respectively.

Kora and Judd Highlight Intersections From Presentation Images

Drill Hole ID	Interval (m)	True width (m)	Gold g/t	Silver g/t	Copper %	Gold Eq	Drill Hole ID	Interval (m)	True width (m)	Gold g/t	Silver g/t	Copper %	Gold Eq	
KUDD0038	28.70	18.08	2.85	25	0.85	4.53	KMDD0816	7.85	7.16	2.29	25	1.92	5.58	
KUDD0023	19.90	14.10	2.69	22	0.58	3.89	KMDD0821	2.47	2.14	7.06	21	0.22	7.65	
KUDD0017	25.00	17.69	18.53	27	0.64	20.89	KMDD0823	6.00	3.57	6.17	4	0.02	6.25	
KUDD0040	22.00	14.30	2.05	21	1.75	5.14	KMDD0825	26.15	9.26	7.32	165	7.01	20.22	
KUDD0040	57.80	37.57	1.16	12	0.89	2.73	KMDD0827	3.12	2.21	3.42	107	2.43	8.46	
KUDD0001	66.55	43.26	3.65	9	0.78	5.02	KMDD0828	2.80	2.05	27.91	18	0.36	28.67	
KUDD0001 KUDD0032	30.30	43.26 16.06	3.49	9 27	1.43	6.13	KMDD0837	2.40	1.73	7.23	6	0.47	8.04	
KUDD0032 KUDD0040	2.40	1.56	344.40	75	0.02	345.36	KMDD0843	3.30	2.45	21.58	14	3.21	26.78	
KUDD0040 KUDD0053	78.50	11.86	24.94	116	0.38	27.03	KMDD0844	2.83	1.85	0.89	7	2.59	5.03	
KUDD0055 KUDD0056	34.00	10.20	5.45	130	0.58	8.14	KMDD0847	4.08	2.28	30.29	30	0.21	30.95	
KUDD0036 KUDD0002	35.90	23.34	1.42	47	2.48	5.98	KMDD0848	3.90	2.84	16.41	5	0.05	16.55	
KUDD0002 KUDD0058	51.00	29.58	0.82	48	3.58	7.04	KMDD0852	4.60	0.86	2.34	24	2.84	7.06	
KUDD0038 KUDD0033	27.90	19.25	4.65	76	3.03	10.48	KMDD0852	4.60	0.86	2.34	24	2.84	7.06	
KMDD0495	30.55	11.80	4.15	76 78	4.79	12.82	KMDD0865	4.10	2.50	0.63	69	7.06	12.49	
KMDD0493	13.50	13.42	14.93	199	1.00	19.02	KMDD0770	14.50	6.63	0.47	47	5.24	9.22	
KMDD0752 KMDD0751	9.50	9.47	2.26	42	2.63	7.00	KMDD0771	11.70	10.86	7.43	162	4.17	15.85	
KMDD0731 KMDD0746	14.40	13.50	9.58	54	1.15	12.09	KMDD0777	1.35	0.97	14.38	147	5.04	23.97	
KMDD0746 KMDD0709	12.14	9.18	4.73	7	0.72	5.97	KMDD0807	3.15	2.52	2.44	29	1.43	5.02	
KMDD0709	12.14	8.33	4.73 25.97	, 58	3.35	31.89	KMDD0810	5.00	3.82	1.27	79 28	3.49	7.65 6.82	
							KMDD0811	6.10	5.51 4.35	3.49	28 61	1.92	6.82 8.61	
KMDD0843	10.10	7.49	14.01	82	0.84	16.29	KMDD0821 KMDD0826	5.03 10.50	4.35 3.13	4.99 4.58	44	1.86 2.61	9.19	
KUDD0038	14.00	8.82	0.91	35	2.58	5.49	KMDD0829	10.60	2.53	2.28	87	5.26	11.51	
KUDD0035	50.05	31.53	1.60	34	2.01	5.25	KMDD0829	7.17	4.95	37.93	69	0.50	39.50	
KMDD0692	8.90	8.13	3.73	81	2.41	8.60	KMDD0830	21.86	19.19	4.05	41	2.58	8.56	
KMDD0743	14.05	13.10	3.14	56	1.07	5.56	KMDD0832	3.00	2.37	7.02	5	0.17	7.34	
KMDD0712	7.25	6.98	3.05	77	0.98	5.58	KMDD0835	4.00	3.55	0.54	26	3.10	5.70	
KMDD0709	16.10	12.26	11.48	40	2.28	15.63	KMDD0836	4.14	2.67	0.47	37	3.52	6.40	
JDD0268	0.65	0.48	11.73	13	0.76	13.07	KMDD0841	7.00	4.79	5.17	46	0.46	6.43	
JDD0286	1.50	1.06	7.96	13	0.73	9.26	KMDD0842	2.70	2.18	15.20	227	1.45	20.10	
JDD0221	6.10	3.92	19.02	7	0.59	20.03	KMDD0845	12.30	7.92	18.14	23	0.11	18.58	
JDD0269	1.70	1.21	19.95	19	0.93	21.62	KMDD0847	4.00	2.23	39.23	72	2.44	43.89	
JDD0279	6.10	3.38	8.80	41	1.74	11.99	KMDD0849	7.05	3.08	0.48	21	2.94	5.32	
JDD0280	1.76	0.88	4.61	46	0.30	5.61	KMDD0862	12.35	10.65	4.70	24	0.48	5.73	
JDD0222	1.88	1.32	5.28	15	0.06	5.54	KMDD0863	4.00	3.22	17.79	3	1.07	19.50	
JDD0273	3.66	3.11	12.94	57	2.48	17.48	KMDD0865	10.05	6.13	0.97	84	6.58	12.25	
JDD0283	1.58	1.20	3.17	53	3.60	9.43	KMDD0866	6.18	3.60	1.92	24	5.60	10.96	
JDD0294	2.20	2.18	10.00	109	3.11	16.13								
KUDD0071	3.40	2.04	5.33	3	0.01	5.38								
KMDD0770	10.60	4.83	0.40	38	2.74	5.14								
KMDD0801	6.15	5.49	6.85	1	0.12	7.05								
KMDD0802	5.80	5.03	9.38	3	0.02	9.45								
KMDD0805	6.00	4.20	6.62	12	1.75	9.51								
KMDD0807	2.40	1.92	8.65	12	0.71	9.91								
KMDD0811	1.79	1.62	3.16	19	1.29	5.40							53	
KMDD0812	8.20	6.17	6.67	10	0.76	7.98							55	

Arakompa Highlight Intersections From Presentation Images

				. True width									rue width									True width									True width				
_	rom (m)	,	Interval (m)	(m)	Gold g/t	Silver g/t	•••	Gold Eq		From (m)	To (m)	Interval (m)	(m)	Gold g/t	Silver g/t	Copper%	Gold Eq	Hole_ID	From (m)	To (m)	Interval (m)	(m)	Gold g/t	Silver g/t	Copper%	Gold Eq	_	From (m)	- 、 ,	ntervai (m)	(m)	_	Silver g/t	Copper%	Gold Eq
KARDD0002 KARDD0002	5.2 5.2	225 154.6	219.8 149.4	112.14 78.35	1.45 1.93	3	0.07 0.09	1.59 2.12	KARDD0035 KARDD0035	93.2 112	94.2 123.1	1 11.1	0.7 7.77	1.00 4.50	48 10	2.72 0.19	5.85 4.93	KARDD0050 KARDD0050	530.1 580	537.4 586.1	7.3 6.1	5.475 4.575	0.98	6 5	0.14 0.32	1.27 1.68	KARDD0060 KARDD0060		466.6 478.5	4.6 1.8	2.99 1.17	1.34	10 46	0.16 0.83	1.70 3.80
KARDD0002	143.6	150.8	7.2	3.46	24.44	13	0.10	24.76	KARDD0035	120	121.7	1.7	1.19	12.55	15	0.19	13.04	KARDD0050	622	626.2	4.2	3.15	1.11 1.12	9	0.35	1.76	KARDD0060	501.1	503	1.9	1.235	3.72	21	0.52	4.78
KARDD0003	89	169.5	80.5	51.52	1.09	3	0.03	1.18	KARDD0036	158.3	206	47.7	28.62	0.74	4	0.14	1.02	KARDD0050	633	634.4	1.4	1.05	3.11	28	1.06	5.10	KARDD0060		543.7	2.2	1.43	0.48	14	0.31	1.14
KARDD0003	161	169.5	8.5	5.44	7.23	12	0.06	7.48	KARDD0036	345	359.7	14.7	8.82	0.82	11	0.11	1.14	KARDD0051	394.3	409.2	14.9	11.175	0.59	5	0.23	1.01	KARDD0060		618.4	4.4	2.86	1.39	24	0.54	2.51
KARDD0004 KARDD0004	0 215	46.5 332	46.5	29.76 74.88	0.96	7	0.03 0.04	1.1	KARDD0036	158.3	165.2	6.9	4.14	2.43	11	0.31	3.05	KARDD0051	388.4	389.2	0.8	0.6	0.79	6	0.44	1.55	KARDD0061 KARDD0061	343 343	439.1 345	96.1 2	76.88 1.6	2.48 3.78	4	0.07	2.64 3.86
KARDD0004 KARDD0004	281.6	332 292.8	117 11.2	74.88	5.64	3 6	0.04	1 5.89	KARDD0036 KARDD0037	203.7 96.3	206 117.2	2.3	1.38	2.16 1.08	18 2	1.04 0.04	4 1.17	KARDD0051 KARDD0051	395.3 403.2	398.1 408	2.8 4.8	2.1 3.6	1.48 0.68	6 10	0.52	2.37 1.33	KARDD0061	374.3	375.5	1.2	0.96	0.80	5	1.24	2.80
KARDD0004	207	248	41	26.24	0.96	4	0.07	1.12	KARDD0037	177	233.2	56.2	33.72	0.96	7	0.15	1.28	KARDD0051	501.2	501.7	0.5	0.375	2.39	6	0.01	2.47	KARDD0061	414.6	421.66	7.06	5.648	27.48	18	0.15	27.92
	245.3	247	1.7	1.09	9.90	11	0.01	10.06	KARDD0037	110.5	112.1	1.6	0.96	6.44	9	0.07	6.67	KARDD0051	509.7	510.7	1	0.75	2.82	45	0.83	4.65	KARDD0061	416.5	419.1	2.6	2.08	64.60	42	0.27	65.50
KARDD0006	0	94.4	94.4	60.42	3.06	3	0.02	3.14	KARDD0037	182.5	192.1	9.6	5.76	2.69	11	0.49	3.6	KARDD0051	524	525.1	1.1	0.825	2.34	29	0.33	3.20	KARDD0061 KARDD0061		431.5 438.1	0.4	0.32	14.90 13.01	5 48	0.02 1.36	14.99 15.70
KARDD0006	5	17.6	12.6 0.9	8.06	19.79	3	0.02	19.87	KARDD0037	185.1	187.4	2.3	1.38	7.92	24	1.46	10.49	KARDD0052	533	608.4	75.4	45.24	0.58	5	0.25	1.04	KARDD0001		367.4	11.9	9.52	0.69	7	0.15	1.00
KARDD0006 KARDD0008	265.9	266.8	60	0.58 30	12.21 1.06	12 6	0.02 0.03	12.39 1.18	KARDD0038 KARDD0038	304.6 51.6	369.6 53.8	65 2.2	41.6 1.41	4.04 6.43	3 17	0.05 0.13	4.15 6.86	KARDD0052 KARDD0052	111.1 372	112.2 375	1.1	0.66 1.8	2.37 0.91	22 17	0.17 0.22	2.88 1.45	KARDD0062	334.6	337.8	3.2	2.56	1.25	17	0.08	1.57
	132.9	240	107.1	42.84	1.59	3	0.09	1.76	KARDD0038	31.0	313.6	2.6	1.66	3.44	20	0.13	4.2	KARDD0052	542.4	546.3	3.9	2.34	0.74	35	0.20	1.45	KARDD0062		346.5	4.8	3.84	0.76	5	0.28	1.25
KARDD0009	210.5	217.2	6.7	2.68	14.19	9	0.03	14.35	KARDD0038	355.1	369.6	14.5	9.28	17.17	4	0.07	17.33	KARDD0052	557.7	562	4.3	2.58	0.73	4	0.45	1.47	KARDD0062 KARDD0062		367.4 495.6	5.2 1.9	4.16 1.52	0.79 0.74	11 11	0.28	1.35 0.92
KARDD0010	320	386	66	40.26	1.86	4	0.12	2.1	KARDD0038	355.1	362	6.9	4.42	34.73	7	0.11	34.99	KARDD0052	590.2	592	1.8	1.08	1.02	5	0.18	1.37	KARDD0062 KARDD0063		514.5	10.7	7.49	0.74	4	0.03	1.20
	325.7	331.1	5.4	3.29	4.62	5	0.10	4.83	KARDD0038	368.4	369.6	1.2	0.77	6.90	4	0.07	7.06	KARDD0052	601.8	608.4	6.6	3.96	2.31	19	0.72	3.66	KARDD0063		292.1	1.1	0.77	5.84	10	0.11	6.12
	344.2	346 384.3	1.8	1.1	15.37	21 7	0.35 0.21	16.18 2.59	KARDD0039		449.5	33.5	20.1	0.85	5	0.09	1.06	KARDD0052	606.2	608.4	2.2	1.32	4.71	51	1.81	8.12	KARDD0063		473	1.4	0.98	2.83	7	0.11	3.09
KARDD0010 KARDD0011	357.5 98.8	384.3 185.4	26.8 86.6	16.35 46.76	2.17 2.03	1	0.21	2.59	KARDD0039 KARDD0039	253.5 448	255.8 449.5	2.3 1.5	1.38 0.9	7.55 13.44	23 33	0.74 0.17	9 14.16	KARDD0053 KARDD0053	480.4 130	490 132.1	9.2 2.1	6.9 1.575	0.88 1.80	1 35	0.11 0.27	1.06 2.62	KARDD0063		476.9	0.5	0.35	8.25	16	0.15	8.68
KARDD0011	98.8	102.5	3.7	2	40.84	17	0.82	42.35	KARDD0040		102.5	14.7	11.76	1.18	4	0.08	1.36	KARDD0053	461.3	466	4.7	3.525	0.97	3	0.08	1.12	KARDD0063 KARDD0064	510.5 387.7	514.5 414	4 26.3	2.8 19.988	2.12 0.62	5 6	0.16 0.17	2.44 0.96
KARDD0013	0	36.9	36.9	29.52	1.40	3	0.04	1.53	KARDD0040	99.5	102.5	3	2.4	4.78	6	0.10	5.03	KARDD0053	480.8	489	8.2	6.15	0.93	1	0.11	1.12	KARDD0004		356.9	1.3	0.988	2.16	18	0.32	2.86
KARDD0013	12.9	20	7.1	5.68	5.47	13	0.04	5.69	KARDD0040	161.4	162.6	1.2	0.96	4.47	2	0.03	4.53	KARDD0054	310.4	328.4	18	13.5	0.90	2	0.04	1.00	KARDD0064		390	2.3	1.748	4.49	18	0.57	5.59
KARDD0014	74.2	75.5	1.3	1.17	2.36	50	1.37	5.19	KARDD0042		236.3	50.4	40.32	1.58	6	0.15	1.9	KARDD0054	182.6	184.9	2.3	1.725	0.69	16	0.11	1.04	KARDD0064		410	1.7	1.292	0.76	13	0.27	1.33
KARDD0014 KARDD0015	218 312.5	219.4 345.2	1.4 32.7	1.26 17.66	11.06 1.97	19 4	0.13 0.10	11.51 2.19	KARDD0042 KARDD0042	111.3	112.3 194	1	0.8 2.08	5.14	6 41	0.03	5.27	KARDD0054 KARDD0054	317.9 323.1	324.3 324.3	6.4 1.2	4.8 0.9	2.21	4 8	0.10 0.17	2.42 10.21	KARDD0065	297	987.4	690.4	641.296	0.17	2		0.30% CuEq
	318.2	322.4	4.2	2.27	6.08	12	0.10	6.55	KARDD0042 KARDD0042	191.4 232.5	236.3	2.6 3.8	3.04	9.06 7.65	25	1.48 0.15	11.91 8.21	KARDD0054 KARDD0055	572.2	592	1.2	13.86	9.85 0.88	2	0.17	1.02	KARDD0065	349.7 429.8	745 479	395.3 49.2	363.38 37.392	0.24	2	0.20	0.38% CuEq 1.15
KARDD0015	340	343.1	3.1	1.67	5.07	2	0.01	5.11	KARDD0043	227	267.5	40.5	32.4	1.20	3	0.03	1.28	KARDD0055	643.4	659.8	16.4	11.48	0.54	4	0.27	1.02	KARDD0065		435.9	6.1	4.64	3.33	21	0.36	4.14
KARDD0016	101.5	121.2	19.7	12.02	0.73	11	0.11	1.06	KARDD0043	230.2	235.3	5.1	4.08	5.38	13	0.07	5.67	KARDD0055	299	300.3	1.3	0.91	2.15	24	0.38	3.03	KARDD0065	446.1	452.8	6.7	5.09	1.31	2	0.16	1.59
KARDD0018	66.8	123.8	57	39.33	1.47	5	0.02	1.58	KARDD0043		260.8	3	2.4	2.96	3	0.05	3.08	KARDD0055	572.2	575.8	3.6	2.52	3.80	3	0.13	4.05	KARDD0065		479	2.3	1.75	2.96	8	1.05	4.70
KARDD0018	66.8	70.8	4	2.76	6.15	30 17	0.04	6.59	KARDD0041		440	32.5	19.5	1.06	43	0.11	1.73	KARDD0055	617.4	618	0.6	0.42	1.39	14	0.90	2.96	KARDD0066		484.6	48.8	37.088	0.26 0.79	3 6	0.02	0.32
	122.5 255.7	123.8 272.9	1.3 17.2	0.9 11.87	35.29 0.67	17	0.14 0.17	35.72 1.12	KARDD0041 KARDD0041	373 407.5	374.6 415.5	1.6	0.96 4.8	4.77 3.28	4 170	0.05 0.25	4.89 5.65	KARDD0055 KARDD0055	644.4 650.9	647.1 656.1	2.7 5.2	1.89 3.64	0.63 1.03	3 10	0.27 0.56	1.09 2.02	KARDD0066	221.6 379.6	223.2 381.4	1.6	1.216 1.368	0.79	8	0.06	1.07
	116.1	150	33.9	23.39	0.73	22	0.06	1.1	KARDD0041	407.5	413.3	3.5	2.1	5.74	385	0.51	10.99	KARDD0055	658.6	659.8	1.2	0.84	1.15	2	0.14	1.39	KARDD0066		406.8	1.6	1.216	0.46	8	0.01	0.56
KARDD0020	148.3	151	2.7	1.86	4.28	175	0.09	6.61	KARDD0041	519.3	521.6	2.3	1.38	1.68	15	1.00	3.42	KARDD0056	345.5	417.6	72.1	51.912	0.80	10	0.05	1.00	KARDD0066	443	445	2	1.52	2.09	2	0.01	2.13
KARDD0023	78	110.4	32.4	19.44	0.83	5	0.06	1	KARDD0045	462.1	475.4	13.3	9.709	0.84	4	0.10	1.03	KARDD0056	345.5	346.9	1.4	1.008	1.51	32	0.25	2.27	KARDD0066	473.5	475.2	1.7	1.292	1.05	7	0.01	1.15
KARDD0023	328	347.6	19.6	11.76	0.72	8	0.14	1.04	KARDD0045		474.15	3.65	2.6645	2.31	8	0.16	2.65	KARDD0056	353.5	361.2	7.7	5.544	5.25	61	0.04	6.02	KARDD0066 KARDD0067	479.3 554.9	480.5 603.2	1.2 48.3	0.912 36.708	0.68	13 5	0.08	0.96 1.34
KARDD0023 KARDD0025	78 191	78.8 299.8	2 100.8	1.2 50.4	12.44 1.71	60 3	0.88 0.10	14.6 1.92	KARDD0046	329.4 332.8	391.6 338.3	62.2 5.5	49.76 4.4	0.87 2.88	5 5	0.10	1.08	KARDD0056 KARDD0056	353.5 375.6	355 377.7	1.5 2.1	1.08	22.29	224 34	0.01 0.19	24.90 2.23	KARDD0007	272.4	274.3	1.9	1.444	0.49	9	0.20	0.89
KARDD0025 KARDD0025	191	299.8	23.6	11.8	5.89	3	0.10	6.57	KARDD0046 KARDD0046		348.6	2.6	2.08	2.88	5 16	0.15 0.59	3.17 3.66	KARDD0056	375.6 410.2	412.3	2.1	1.512 1.512	1.54 0.73	34 7	0.19	1.35	KARDD0067	557.4	575	17.6	13.376	1.64	9	0.50	2.53
KARDD0025	199	211	12	6	10.49	11	0.33	11.16	KARDD0046	369.5	375.6	6.1	4.88	2.12	3	0.09	2.29	KARDD0056	481.5	485.3	3.8	2.736	0.91	14	0.20	1.38	KARDD0067	561.3	563	1.7	1.292	5.49	17	0.32	6.18
KARDD0025	199	200.4	1.4	0.7	65.62	64	1.01	68.05	KARDD0047	123.9	185.9	62	42.78	0.19	13	0.02	0.37	KARDD0056	528.6	534.6	6	4.32	0.34	24	0.38	1.21	KARDD0067	584.3	585.6	1.3	0.988	1.49	16 24	0.64	2.67
	296.9	299.8	2.9	1.45	11.26	9	0.06	11.47	KARDD0047	294.2	319.6	25.4	17.526	1.23	8	0.13	1.52	KARDD0057	588.8	711.1	122.3	88.056	0.16	2	0.18	0.46	KARDD0067 001AD92	601.9 11.2	603.2 48	1.3 36.8	0.988 25.55	1.09 2.31	24	1.41 0.03	3.57 2.38
KARDD0027	0	23.3	23.3	11.65	0.98	2	0.02	1.05	KARDD0047	154.8	155.8	1	0.69	0.09	540	0.25	6.73	KARDD0057	127.9	133.1	5.2	3.744	5.06	26	0.14	5.57	002AD92	4	74	70	49	0.44	3	0.03	0.52
KARDD0028 KARDD0028	83 101.2	128.9 107.8	45.9 6.6	32.13 4.62	1.72 2.95	5 3	0.06 0.05	1.88 3.08	KARDD0047 KARDD0048	307.6 378	311.4 423.42	3.8 45.42	2.622 32.2482	6.38 0.99	44 1	0.61 0.03	7.84 1.05	KARDD0057 KARDD0057	317.2 493.6	319 495.3	1.8	1.296 1.224	1.69	31 14	0.44 0.28	2.74 1.72	003AD92	36	98	62	43.4	0.66	2	0.02	0.72
KARDD0028	1113	120	7	4.02	5.04	10	0.06	5.26	KARDD0048		216.3	1.2	0.852	11.80	3	0.00	11.84	KARDD0057	551.2	551.7	0.5	0.36	5.17	38	2.17	9.01	004AD92	0	55.5	55.5	38.85	2.43	3	0.07	2.57
	240.6	261.2	20.6	8.24	8.90	29	0.38	9.87	KARDD0048		235.1	0.9	0.639	13.65	3	0.01	13.70	KARDD0057	616.1	617.6	1.5	1.08	0.67	35	0.35	1.62	005AD92 006AD92	18 49	59.9 85	41.9 36	29.33 25.2	2.12 1.21	2 27	0.04	2.20 1.60
KARDD0029	240.6	251.3	10.7	4.28	13.81	25	0.53	14.97	KARDD0048	393.7	395.3	1.6	1.136	11.15	2	0.04	11.24	KARDD0058	427.1	483.8	56.7	40.824	0.39	2	0.08	0.54	000AD92 007AD92	49 9	34.75	25.75	18.025	0.46	1	0.03	0.50
	216.5	328.12	111.62	78.13	1.35	4	0.08	1.53	KARDD0048		417.8	4.8	3.408	3.11	1	0.06	3.22	KARDD0058	141.5	142.7	1.2	0.864	5.34	29	0.25	6.06	008AD92	10.9	51	40.1	28.07	1.04	2	0.03	1.11
KARDD0030	46.5	47.9	1.4	0.98	30.77	13	0.04	30.99	KARDD0049		351.8	31.2	22.152	1.17	3	0.11	1.38	KARDD0058	361.8	363.6	1.8	1.296	0.96	3	0.04	1.06	009AD92	7	26	19	13.3	3.05	5	0.05	3.18
KARDD0030 KARDD0030	233.1	238.5 261.1	5.4 5.53	3.78 3.87	5.01 3.38	15 13	0.43 0.31	5.88 4.04	KARDD0049 KARDD0049	334 345.1	342.5 351.8	8.5 6.7	6.035 4.757	1.13 3.35	6	0.23	1.55 3.55	KARDD0058 KARDD0058	427.1 441.2	428.7 442.5	1.6 1.3	1.152 0.936	1.09 0.87	2	0.20	1.42 1.10	010AD92	0	38	38	26.6	2.66	3	0.08	2.83
	326.5	328.12	1.62	1.13	33.38	4	0.05	33.52	KARDD0049		346.2	1.1	0.781	14.45	6	0.11	14.80	KARDD0058	480.2	483.8	3.6	2.592	1.04	3	0.10	1.10	011AD92 012AD92	0	48 64.65	48 64.65	33.6 45.255	1.11 0.83	3	0.02	1.18 0.93
KARDD0030	133	136.5	3.5	2.1	3.15	4	0.03	3.25	KARDD0050		637.3	25.3	18.975	0.61	5	0.21	1.00	KARDD0059	476	498.2	22.2	15.984	0.72	5	0.16	1.02	012AD92 013AD92	7	64.65 31	64.65 24	45.255 16.8	0.83 3.53	3	0.04	0.93 3.65
	295.6	353.3	57.7	34.62	1.28	3	0.08	1.44	KARDD0050		98.7	5	3.75	1.17	11	0.11	1.48	KARDD0059	281.3	283.4	2.1	1.512	0.78	29	0.46	1.83	014AD92	9	45	36	25.2	2.61	7	0.04	2.76
	332.6	343.7	11.1	6.66	5.37	8	0.29	5.93	KARDD0050		297.3	7.2	5.4	0.41	14	0.20	0.88	KARDD0059	353.8	357.2	3.4	2.448	0.93	12	0.02	1.11	015AD92	23	43	20	14	0.60	5	0.05	0.73
KARDD0033	332.6	335.9	3.3	1.98	10.92	3	0.12	11.15	KARDD0050		358	6.3	4.725	1.26	6	0.05	1.40	KARDD0059	459.5	460.2	0.7	0.504	4.18	39	1.00	6.21	016AD92	54	91.2	37.2	26.04	3.00	9	0.29	3.56
KARDD0035 KARDD0035	58.5 93.2	143.8 123.1	85.3 29.9	59.71 20.93	1.00 2.09	4 7	0.08	1.19 2.49	KARDD0050 KARDD0050	409.1	410.2 467.4	1.1	0.825 1.05	2.94 2.69	1 21	0.02 0.21	2.97 3.26	KARDD0059	489.6 608.7	493.3 633.6	3.7 24.9	2.664 16.185	3.34 0.45	22 8	0.84 0.30	4.92 1.01	017AD92 018AD92	12 161	42 247	30 86	21 60.2	0.18 0.45	1	0.01	0.21
KWUDD0033	J3.2	123.1	23.3	20.53	2.03	,	0.20	2.43	KWUDD0020	400	407.4	1.4	1.03	2.05	21	0.21	3.20	KANDD0000	000.7	033.0	24.3	10.103	0.43	0	0.30	1.01	UIONDSZ	101	247	ou	00.2	0.43	3	0.04	0.55

John Lewins CEO & Director

Contact:

David Medilek, P.Eng., CFA President & COO

E-mail: <u>dmedilek@k92mining.com</u> Phone: +1 (604) 416 4445

